File size: 10,261 Bytes
b599481 c817ff0 b599481 c817ff0 b599481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
"""Start a Flask server to interact with the model.
Inspired by `script/ask.py`."""
import argparse
import json
import logging
import random
import uuid
from typing import Any, Dict, Tuple
import openai
from flask import Flask, request, session
from src.model.crs_model import CRSModel
from src.model.utils import get_entity, get_options
logging.basicConfig(
format="[%(asctime)s] %(levelname)-12s %(message)s",
handlers=[logging.StreamHandler()],
)
logger = logging.getLogger(__name__)
def parse_args() -> argparse.Namespace:
"""Parses command line arguments.
Returns:
Command line arguments.
"""
parser = argparse.ArgumentParser(
prog="serve_model.py",
description="Start a Flask server to interact with the model.",
)
parser.add_argument(
"--crs_model",
type=str,
choices=["kbrd", "barcor", "unicrs", "chatgpt"],
)
parser.add_argument(
"--kg_dataset", type=str, choices=["redial", "opendialkg"]
)
# model_detailed
parser.add_argument("--hidden_size", type=int)
parser.add_argument("--entity_hidden_size", type=int)
parser.add_argument("--num_bases", type=int, default=8)
parser.add_argument("--context_max_length", type=int)
parser.add_argument("--entity_max_length", type=int)
# model
parser.add_argument("--rec_model", type=str)
parser.add_argument("--conv_model", type=str)
# conv
parser.add_argument("--tokenizer_path", type=str)
parser.add_argument("--encoder_layers", type=int)
parser.add_argument("--decoder_layers", type=int)
parser.add_argument("--text_hidden_size", type=int)
parser.add_argument("--attn_head", type=int)
parser.add_argument("--resp_max_length", type=int)
# prompt
parser.add_argument("--api_key", type=str)
parser.add_argument("--model", type=str)
parser.add_argument("--text_tokenizer_path", type=str)
parser.add_argument("--text_encoder", type=str)
# server
parser.add_argument("--host", type=str, default="127.0.0.1")
parser.add_argument("--port", type=str, default="5005")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--debug", action="store_true")
return parser.parse_args()
def get_model_args(
model_name: str, args: argparse.Namespace
) -> Dict[str, Any]:
"""Returns model's arguments from command line arguments.
Args:
model_name: Model's name.
args: Command line arguments.
Raises:
ValueError: If model is not supported.
Returns:
Model's arguments.
"""
if model_name == "kbrd":
return {
"debug": args.debug,
"kg_dataset": args.kg_dataset,
"hidden_size": args.hidden_size,
"entity_hidden_size": args.entity_hidden_size,
"num_bases": args.num_bases,
"rec_model": args.rec_model,
"conv_model": args.conv_model,
"context_max_length": args.context_max_length,
"entity_max_length": args.entity_max_length,
"tokenizer_path": args.tokenizer_path,
"encoder_layers": args.encoder_layers,
"decoder_layers": args.decoder_layers,
"text_hidden_size": args.text_hidden_size,
"attn_head": args.attn_head,
"resp_max_length": args.resp_max_length,
"seed": args.seed,
}
elif model_name == "barcor":
return {
"debug": args.debug,
"kg_dataset": args.kg_dataset,
"rec_model": args.rec_model,
"conv_model": args.conv_model,
"context_max_length": args.context_max_length,
"resp_max_length": args.resp_max_length,
"tokenizer_path": args.tokenizer_path,
"seed": args.seed,
}
elif model_name == "unicrs":
return {
"debug": args.debug,
"seed": args.seed,
"kg_dataset": args.kg_dataset,
"tokenizer_path": args.tokenizer_path,
"context_max_length": args.context_max_length,
"entity_max_length": args.entity_max_length,
"resp_max_length": args.resp_max_length,
"text_tokenizer_path": args.text_tokenizer_path,
"rec_model": args.rec_model,
"conv_model": args.conv_model,
"model": args.model,
"num_bases": args.num_bases,
"text_encoder": args.text_encoder,
}
elif model_name == "chatgpt":
openai.api_key = args.api_key
return {
"seed": args.seed,
"debug": args.debug,
"kg_dataset": args.kg_dataset,
}
raise ValueError(f"Model {model_name} is not supported.")
class CRSFlaskServer:
def __init__(
self,
crs_model: CRSModel,
kg_dataset: str,
response_generation_args: Dict[str, Any] = {},
) -> None:
"""Initializes CRS Flask server.
Args:
crs_model: CRS model.
kg_dataset: Name of knowledge graph dataset.
response_generation_args: Arguments for response generation.
Defaults to None.
"""
self.crs_model = crs_model
# Load entity data
with open(
f"data/{kg_dataset}/entity2id.json", "r", encoding="utf-8"
) as f:
self.entity2id = json.load(f)
self.id2entity = {int(v): k for k, v in self.entity2id.items()}
self.entity_list = list(self.entity2id.keys())
# Get options
self.options = get_options(kg_dataset)
# Response generation arguments
self.response_generation_args = response_generation_args
self.app = Flask(__name__)
self.app.add_url_rule(
"/",
"receive_message",
self.receive_message,
methods=["GET", "POST"],
)
self.app.secret_key = str(uuid.uuid4().hex)
def start(self, host: str = "127.0.0.1", port: str = "5005") -> None:
"""Starts the CRS Flask server.
Args:
host: Host address. Defaults to 127.0.0.1.
port: Port number. Defaults to 5005.
"""
self._host = host
self._port = port
self.app.run(host=host, port=port)
def receive_message(self) -> Tuple[Dict[str, Any], int]:
"""Receives a message and returns a response.
Returns:
A response dictionary with the message and status code.
"""
if request.method == "GET":
return "Model is running.", 200
else:
sender_data = request.get_json()
logger.debug(f"Received user request:\n{sender_data}")
try:
# Process conversation to create conversation dictionary
conversation_dict = self._process_sender_data(sender_data)
state = conversation_dict.pop("state")
# Get response
response, new_state = self.crs_model.get_response(
conversation_dict,
self.id2entity,
self.options,
state,
**self.response_generation_args,
)
logger.debug(f"Generated response: {response}")
session["state"] = new_state
return {"response": response}, 200
except ValueError as e:
logger.error(f"Error occurred: {e}")
return (
"An error occurred, make sure you have provided the context"
" and message.",
400,
)
def _process_sender_data(
self, sender_data: Dict[str, Any]
) -> Dict[str, Any]:
"""Processes sender data to create conversation dictionary.
The conversation dictionary contains the following keys: context,
entity, rec, resp, template, and state. Context is a list of the
previous utterances, entity is a list of entities mentioned in the
conversation, rec is the recommended items, resp is the response
generated by the model, and state is the state of the options.
Note that rec, resp, and template are empty as the model is used for
inference only, they are kept for compatibility with the models.
Args:
sender_data: Data sent by the sender.
Raises:
ValueError: If context or message is not present in sender data.
Returns:
Conversation dictionary.
"""
if any(key not in sender_data for key in ["context", "message"]):
raise ValueError(
"Invalid sender data. Missing context or message."
)
context = sender_data["context"] + [sender_data["message"]]
state = session.pop("state", None)
if state is None or len(state) != len(self.options[1]):
state = [0.0] * len(self.options[1])
entities = []
for utterance in context:
utterance_entities = get_entity(utterance, self.entity_list)
entities.extend(utterance_entities)
return {
"context": context,
"entity": entities,
"rec": [],
"resp": "",
"template": [],
"state": state,
}
if __name__ == "__main__":
args = parse_args()
random.seed(args.seed)
if args.debug:
logger.setLevel(logging.DEBUG)
model_args = get_model_args(args.crs_model, args)
logger.info(f"Loaded arguments for {args.crs_model} model.")
logger.debug(f"Model arguments:\n{model_args}")
# Load model
crs_model = CRSModel(crs_model=args.crs_model, **model_args)
logger.info(f"Loaded {args.crs_model} model.")
# Generation arguments
response_generation_args = {}
if args.crs_model == "unicrs":
response_generation_args = {
"movie_token": (
"<movie>" if args.kg_dataset.startswith("redial") else "<mask>"
),
}
# Start CRS Flask server
crs_server = CRSFlaskServer(
crs_model, args.kg_dataset, response_generation_args
)
crs_server.start(args.host, args.port)
|