File size: 10,075 Bytes
b599481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2247f6e
 
b599481
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import json
import sys
from collections import defaultdict
from typing import Any, Dict, List, Tuple

import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

sys.path.append("..")

from src.model.barcor.barcor_model import BartForSequenceClassification
from src.model.barcor.kg_bart import KGForBART


class BARCOR:
    def __init__(
        self,
        seed,
        kg_dataset,
        debug,
        tokenizer_path,
        context_max_length,
        rec_model,
        conv_model,
        resp_max_length,
    ):
        self.seed = seed
        if self.seed is not None:
            set_seed(self.seed)
        self.kg_dataset = kg_dataset

        self.debug = debug
        self.tokenizer_path = tokenizer_path
        self.tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_path)
        self.tokenizer.truncation_side = "left"
        self.context_max_length = context_max_length

        self.padding = "max_length"
        self.pad_to_multiple_of = 8

        self.accelerator = Accelerator(
            device_placement=False, mixed_precision="fp16"
        )
        self.device = self.accelerator.device

        self.rec_model = rec_model
        self.conv_model = conv_model

        # conv
        self.resp_max_length = resp_max_length

        self.kg = KGForBART(
            kg_dataset=self.kg_dataset, debug=self.debug
        ).get_kg_info()

        self.crs_rec_model = BartForSequenceClassification.from_pretrained(
            self.rec_model, num_labels=self.kg["num_entities"]
        ).to(self.device)
        self.crs_conv_model = AutoModelForSeq2SeqLM.from_pretrained(
            self.conv_model
        ).to(self.device)
        self.crs_conv_model = self.accelerator.prepare(self.crs_conv_model)

        self.kg_dataset_path = f"data/{self.kg_dataset}"
        with open(
            f"{self.kg_dataset_path}/entity2id.json", "r", encoding="utf-8"
        ) as f:
            self.entity2id = json.load(f)

    def get_rec(self, conv_dict):
        # dataset
        text_list = []
        turn_idx = 0

        for utt in conv_dict["context"]:
            if utt != "":
                text = ""
                if turn_idx % 2 == 0:
                    text += "User: "
                else:
                    text += "System: "
                text += utt
                text_list.append(text)
            turn_idx += 1

        context = f"{self.tokenizer.sep_token}".join(text_list)
        context_ids = self.tokenizer.encode(
            context, truncation=True, max_length=self.context_max_length
        )

        data_list = []

        if "rec" not in conv_dict.keys() or not conv_dict["rec"]:
            # Interactive mode: the ground truth is not provided
            data_dict = {
                "context": context_ids,
                "entity": [
                    self.entity2id[ent]
                    for ent in conv_dict["entity"]
                    if ent in self.entity2id
                ],
            }
            if "template" in conv_dict:
                data_dict["template"] = conv_dict["template"]
            data_list.append(data_dict)
        else:
            for rec in conv_dict["rec"]:
                if rec in self.entity2id:
                    data_dict = {
                        "context": context_ids,
                        "entity": [
                            self.entity2id[ent]
                            for ent in conv_dict["entity"]
                            if ent in self.entity2id
                        ],
                        "rec": self.entity2id[rec],
                    }
                    if "template" in conv_dict:
                        data_dict["template"] = conv_dict["template"]
                    data_list.append(data_dict)

        # dataloader
        input_dict = defaultdict(list)
        label_list = []

        for data in data_list:
            input_dict["input_ids"].append(data["context"])
            if "rec" in data.keys():
                label_list.append(data["rec"])

        input_dict = self.tokenizer.pad(
            input_dict,
            max_length=self.context_max_length,
            padding=self.padding,
            pad_to_multiple_of=self.pad_to_multiple_of,
        )

        if len(label_list) > 0:
            input_dict["labels"] = label_list

        for k, v in input_dict.items():
            if not isinstance(v, torch.Tensor):
                input_dict[k] = torch.as_tensor(v, device=self.device)

        labels = (
            input_dict["labels"].tolist() if "labels" in input_dict else None
        )
        self.crs_rec_model.eval()
        outputs = self.crs_rec_model(**input_dict)
        item_ids = torch.as_tensor(self.kg["item_ids"], device=self.device)
        logits = outputs["logits"][:, item_ids]
        ranks = torch.topk(logits, k=50, dim=-1).indices
        preds = item_ids[ranks].tolist()

        return preds, labels

    def get_conv(self, conv_dict):
        text_list = []
        turn_idx = 0
        for utt in conv_dict["context"]:
            if utt != "":
                text = ""
                if turn_idx % 2 == 0:
                    text += "User: "
                else:
                    text += "System: "
                text += utt
                text_list.append(text)
            turn_idx += 1
        context = f"{self.tokenizer.sep_token}".join(text_list)
        context_ids = self.tokenizer.encode(
            context, truncation=True, max_length=self.context_max_length
        )

        if turn_idx % 2 == 0:
            user_str = "User: "
        else:
            user_str = "System: "
        resp = user_str + conv_dict["resp"]
        resp_ids = self.tokenizer.encode(
            resp, truncation=True, max_length=self.resp_max_length
        )

        data_dict = {
            "context": context_ids,
            "resp": resp_ids,
        }

        input_dict = defaultdict(list)
        label_dict = defaultdict(list)

        input_dict["input_ids"] = data_dict["context"]
        label_dict["input_ids"] = data_dict["resp"]

        input_dict = self.tokenizer.pad(
            input_dict,
            max_length=self.context_max_length,
            padding=self.padding,
            pad_to_multiple_of=self.pad_to_multiple_of,
        )

        label_dict = self.tokenizer.pad(
            label_dict,
            max_length=self.context_max_length,
            padding=self.padding,
            pad_to_multiple_of=self.pad_to_multiple_of,
        )["input_ids"]

        input_dict["labels"] = label_dict

        for k, v in input_dict.items():
            if not isinstance(v, torch.Tensor):
                input_dict[k] = torch.as_tensor(
                    v, device=self.device
                ).unsqueeze(0)

        self.crs_conv_model.eval()

        gen_args = {
            "min_length": 0,
            "max_length": self.resp_max_length,
            "num_beams": 1,
            "no_repeat_ngram_size": 3,
            "encoder_no_repeat_ngram_size": 3,
        }

        gen_seqs = self.accelerator.unwrap_model(self.crs_conv_model).generate(
            **input_dict, **gen_args
        )
        gen_str = self.tokenizer.decode(gen_seqs[0], skip_special_tokens=True)

        return input_dict, gen_str

    def get_choice(self, gen_inputs, options, state, conv_dict=None):
        outputs = self.accelerator.unwrap_model(self.crs_conv_model).generate(
            **gen_inputs,
            min_new_tokens=5,
            max_new_tokens=5,
            num_beams=1,
            return_dict_in_generate=True,
            output_scores=True,
        )
        option_token_ids = [
            self.tokenizer.encode(f" {op}", add_special_tokens=False)[0]
            for op in options
        ]
        option_scores = outputs.scores[-2][0][option_token_ids]
        state = torch.as_tensor(
            state, device=self.device, dtype=option_scores.dtype
        )
        option_scores += state
        option_with_max_score = options[torch.argmax(option_scores)]

        return option_with_max_score

    def get_response(
        self,
        conv_dict: Dict[str, Any],
        id2entity: Dict[int, str],
        options: Tuple[str, Dict[str, str]],
        state: List[float],
    ) -> Tuple[str, List[float]]:
        """Generates a response given a conversation context.

        Args:
            conv_dict: Conversation context.
            id2entity: Mapping from entity id to entity name.
            options: Prompt with options and dictionary of options.
            state: State of the option choices.

        Returns:
            Generated response and updated state.
        """
        generated_inputs, generated_response = self.get_conv(conv_dict)
        options_letter = list(options[1].keys())

        # Get the choice between recommend and generate
        choice = self.get_choice(generated_inputs, options_letter, state)

        if choice == options_letter[-1]:
            # Generate a recommendation
            recommended_items, _ = self.get_rec(conv_dict)
            recommended_items_str = ""
            for i, item_id in enumerate(recommended_items[0][:3]):
                recommended_items_str += f"{i+1}: {id2entity[item_id]}  \n"
            response = (
                "I would recommend the following items:  \n"
                f"{recommended_items_str}"
            )
        else:
            # Original : Generate a response to ask for preferences. The
            # fallback is to use the generated response.
            # response = (
            #     options[1].get(choice, {}).get("template", generated_response)
            # )
            generated_response = generated_response.lstrip("System;:")
            response = generated_response.strip()

        # Update the state. Hack: penalize the choice to reduce the
        # likelihood of selecting the same choice again
        state[options_letter.index(choice)] = -1e5

        return response, state