File size: 5,897 Bytes
b599481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fd9723
b599481
94a5e7f
 
b599481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""Contextual Retrieval-based CRS.

This CRS comprises two main components: a retriever and a recommender. The 
retriever is responsible for retrieving and ranking a set of responses from a
pre-defined corpus. The recommender is responsible for recommending items
whenever the retrieved responses contains an item placeholder.

Adapted from original code:
https://github.com/ahtsham58/CRB-CRS/tree/main
"""

import logging
import os
import re
from typing import Any, Dict, List, Tuple

from nltk.tokenize import word_tokenize
import nltk

nltk.download('punkt_tab')

from src.model.crb_crs.recommender import *
from src.model.crb_crs.retriever.mle_model import NGramMLE
from src.model.crb_crs.retriever.retriever import Retriever


class CRBCRSModel:
    def __init__(
        self,
        dataset: str,
        domain: str,
        corpus_folder: str,
        mle_model_path: str,
        recommender_path: str,
    ) -> None:
        """Initializes the CRB-CRS model.

        Args:
            dataset: Dataset name.
            domain: Domain of application.
            corpus_folder: Path to the folder containing the corpus.
            mle_model_path: Path to the MLE model.
            recommender_path: Path to the recommender model.

        Raises:
            FileNotFoundError: If MLE model path does not exist.
        """
        if not os.path.exists(mle_model_path):
            raise FileNotFoundError(
                f"MLE model path {mle_model_path} does not exist."
            )
        mle_model = NGramMLE.load(mle_model_path)
        self.kg_dataset = dataset  # No relation with a KG, naming is kept for compatibility. # noqa

        self.retriever = Retriever(corpus_folder, mle_model, dataset, domain)
        self.recommender = Recommender.load(recommender_path)

    def get_rec(self, conv_dict: Dict[str, Any]):
        """Generates recommendations given a conversation context."""
        pass

    def get_conv(self, conv_dict: Dict[str, Any]):
        """Generates utterance given a conversation context."""
        pass

    def get_response(
        self,
        conv_dict: Dict[str, Any],
        id2entity: Dict[int, str] = None,
        options: Tuple[str, Dict[str, str]] = None,
        state: List[float] = None,
    ) -> Tuple[str, List[float]]:
        """Generates a response given a conversation context.

        Args:
            conv_dict: Conversation context.
            id2entity (not used): Mapping from entity id to entity name.
              Defaults to None.
            options (not used): Prompt with options and dictionary of options.
              Defaults to None.
            state (not used): State of the option choices. Defaults to None.
        Returns:
            Generated response.
        """
        # Retrieval
        context = conv_dict["context"]
        last_user_utterance = context[-1]
        last_user_utterance_tokens = word_tokenize(last_user_utterance)
        candidate_responses = []

        # Get candidates based on the last user utterance
        candidate_responses.extend(self._get_candidates([last_user_utterance]))

        if len(context) > 1:
            # Get candidates based on last user utterance and the previous
            # agent utterance
            candidate_responses.extend(self._get_candidates(context[-2:]))

        if len(context) > 2:
            # Get candidates based on the last user utterance, the previous
            # agent utterance, and the user utterance before that
            candidate_responses.extend(self._get_candidates(context[-3:]))

        if len(context) > 3:
            # Get candidates based on the entire conversation context
            candidate_responses.extend(self._get_candidates(context))

        ranked_candidates = self.retriever.rank_candidates(
            last_user_utterance_tokens, candidate_responses
        )
        retrieved_response = ranked_candidates[0]

        # Recommendation
        recommended_items = []
        original_item_ids = self.get_item_ids_from_retrieved_response(
            retrieved_response
        )
        if original_item_ids:
            recommended_items = self.recommender.get_recommendations(context)

        # Replace item ids in the retrieved response with recommendations
        response = self.recommender.replace_item_ids_with_recommendations(
            retrieved_response, original_item_ids, recommended_items
        )

        # Integrate metadata into the retrieved response
        try:
            response = self.recommender.integrate_domain_metadata(
                context, response
            )
        except Exception as e:
            logging.error(f"Error while integrating metadata: {e}")

        response = self.retriever.remove_utterance_prefix(response)
        return response, None

    def get_item_ids_from_retrieved_response(self, response: str) -> List[str]:
        """Extracts item ids from a retrieved response.

        Args:
            response: Retrieved response.

        Returns:
            List of item ids.
        """
        if self.kg_dataset == "redial":
            return [
                re.sub(r"[@?]", "", id) for id in re.findall(r"@\S+", response)
            ]
        return []

    def _get_candidates(self, context: List[str]) -> List[str]:
        """Gets candidate responses based on the conversation context."""
        input_query = self.retriever.build_query(context)
        candidates = self.retriever.retrieve_candidates(context=input_query)
        return self.retriever.filter_outliers_from_candidates(candidates)

    def get_choice(self, gen_inputs, option, state, conv_dict=None):
        """Generates a choice between options given a conversation context.

        This method is not implemented in this class because the recommendation
        stage is already conditioned on the conversation context."""
        pass