File size: 12,753 Bytes
b599481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import json
import sys
from collections import defaultdict
from typing import Any, Dict, List, Tuple
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from transformers import AutoTokenizer, BartConfig
sys.path.append("..")
from src.model.kbrd.kbrd_model import KBRDforConv, KBRDforRec
from src.model.kbrd.kg_kbrd import KGForKBRD
from src.model.utils import padded_tensor
class KBRD:
def __init__(
self,
seed,
kg_dataset,
debug,
hidden_size,
entity_hidden_size,
num_bases,
rec_model,
conv_model,
context_max_length,
tokenizer_path,
encoder_layers,
decoder_layers,
text_hidden_size,
attn_head,
resp_max_length,
entity_max_length,
):
self.seed = seed
if self.seed is not None:
set_seed(self.seed)
self.kg_dataset = kg_dataset
# model detailed
self.debug = debug
self.hidden_size = hidden_size
self.entity_hidden_size = entity_hidden_size
self.num_bases = num_bases
self.context_max_length = context_max_length
self.entity_max_length = entity_max_length
# model
self.rec_model = rec_model
self.conv_model = conv_model
# conv
self.tokenizer_path = tokenizer_path
self.tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_path)
self.encoder_layers = encoder_layers
self.decoder_layers = decoder_layers
self.text_hidden_size = text_hidden_size
self.attn_head = attn_head
self.resp_max_length = resp_max_length
self.padding = "max_length"
self.pad_to_multiple_of = 8
self.kg_dataset_path = f"data/{self.kg_dataset}"
with open(
f"{self.kg_dataset_path}/entity2id.json", "r", encoding="utf-8"
) as f:
self.entity2id = json.load(f)
# Initialize the accelerator.
self.accelerator = Accelerator(
device_placement=False, mixed_precision="fp16"
)
self.device = self.accelerator.device
self.kg = KGForKBRD(
kg_dataset=self.kg_dataset, debug=self.debug
).get_kg_info()
self.pad_id = self.kg["pad_id"]
# rec model
self.crs_rec_model = KBRDforRec(
hidden_size=self.hidden_size,
num_relations=self.kg["num_relations"],
num_bases=self.num_bases,
num_entities=self.kg["num_entities"],
)
if self.rec_model is not None:
self.crs_rec_model.load(self.rec_model)
self.crs_rec_model = self.crs_rec_model.to(self.device)
self.crs_rec_model = self.accelerator.prepare(self.crs_rec_model)
# conv model
config = BartConfig.from_pretrained(
self.conv_model,
encoder_layers=self.encoder_layers,
decoder_layers=self.decoder_layers,
hidden_size=self.text_hidden_size,
encoder_attention_heads=self.attn_head,
decoder_attention_heads=self.attn_head,
encoder_ffn_dim=self.text_hidden_size,
decoder_ffn_dim=self.text_hidden_size,
forced_bos_token_id=None,
forced_eos_token_id=None,
)
self.crs_conv_model = KBRDforConv(
config, user_hidden_size=self.entity_hidden_size
).to(self.device)
if self.conv_model is not None:
self.crs_conv_model = KBRDforConv.from_pretrained(
self.conv_model, user_hidden_size=self.entity_hidden_size
).to(self.device)
self.crs_conv_model = self.accelerator.prepare(self.crs_conv_model)
def get_rec(self, conv_dict):
data_dict = {
"item": [
self.entity2id[rec]
for rec in conv_dict["rec"]
if rec in self.entity2id
],
}
entity_ids = (
[
self.entity2id[ent]
for ent in conv_dict["entity"][-self.entity_max_length :]
if ent in self.entity2id
],
)
if "dialog_id" in conv_dict:
data_dict["dialog_id"] = conv_dict["dialog_id"]
if "turn_id" in conv_dict:
data_dict["turn_id"] = conv_dict["turn_id"]
if "template" in conv_dict:
data_dict["template"] = conv_dict["template"]
# kg
edge_index, edge_type = torch.as_tensor(
self.kg["edge_index"], device=self.device
), torch.as_tensor(self.kg["edge_type"], device=self.device)
entity_ids = padded_tensor(
entity_ids,
pad_id=self.pad_id,
pad_tail=True,
max_length=self.entity_max_length,
device=self.device,
debug=self.debug,
)
data_dict["entity"] = {
"entity_ids": entity_ids,
"entity_mask": torch.ne(entity_ids, self.pad_id),
}
# infer
self.crs_rec_model.eval()
with torch.no_grad():
data_dict["entity"]["edge_index"] = edge_index
data_dict["entity"]["edge_type"] = edge_type
outputs = self.crs_rec_model(
**data_dict["entity"], reduction="mean"
)
logits = outputs["logit"][:, self.kg["item_ids"]]
ranks = torch.topk(logits, k=50, dim=-1).indices.tolist()
preds = [
[self.kg["item_ids"][rank] for rank in rank_list]
for rank_list in ranks
]
labels = data_dict["item"]
return preds, labels
def get_conv(self, conv_dict):
self.tokenizer.truncation_side = "left"
context_list = conv_dict["context"]
context = f"{self.tokenizer.sep_token}".join(context_list)
context_ids = self.tokenizer.encode(
context, truncation=True, max_length=self.context_max_length
)
context_batch = defaultdict(list)
context_batch["input_ids"] = context_ids
context_ids = self.tokenizer.pad(
context_batch,
max_length=self.context_max_length,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
)
self.tokenizer.truncation_side = "right"
resp = conv_dict["resp"]
resp_batch = defaultdict(list)
resp_ids = self.tokenizer.encode(
resp, truncation=True, max_length=self.resp_max_length
)
resp_batch["input_ids"] = resp_ids
resp_batch = self.tokenizer.pad(
resp_batch,
max_length=self.resp_max_length,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
)
context_batch["labels"] = resp_batch["input_ids"]
for k, v in context_batch.items():
if not isinstance(v, torch.Tensor):
context_batch[k] = torch.as_tensor(
v, device=self.device
).unsqueeze(0)
entity_list = (
[
self.entity2id[ent]
for ent in conv_dict["entity"][-self.entity_max_length :]
if ent in self.entity2id
],
)
entity_ids = padded_tensor(
entity_list,
pad_id=self.pad_id,
pad_tail=True,
device=self.device,
debug=self.debug,
max_length=self.context_max_length,
)
entity = {
"entity_ids": entity_ids,
"entity_mask": torch.ne(entity_ids, self.pad_id),
}
data_dict = {"context": context_batch, "entity": entity}
edge_index, edge_type = torch.as_tensor(
self.kg["edge_index"], device=self.device
), torch.as_tensor(self.kg["edge_type"], device=self.device)
node_embeds = self.crs_rec_model.get_node_embeds(edge_index, edge_type)
user_embeds = self.crs_rec_model(
**data_dict["entity"], node_embeds=node_embeds
)["user_embeds"]
gen_inputs = {
**data_dict["context"],
"decoder_user_embeds": user_embeds,
}
gen_inputs.pop("labels")
gen_args = {
"min_length": 0,
"max_length": self.resp_max_length,
"num_beams": 1,
"no_repeat_ngram_size": 3,
"encoder_no_repeat_ngram_size": 3,
}
gen_seqs = self.accelerator.unwrap_model(self.crs_conv_model).generate(
**gen_inputs, **gen_args
)
gen_str = self.tokenizer.decode(gen_seqs[0], skip_special_tokens=True)
return gen_inputs, gen_str
def get_choice(self, gen_inputs, options, state, conv_dict=None):
state = torch.as_tensor(state, device=self.device)
outputs = self.accelerator.unwrap_model(self.crs_conv_model).generate(
**gen_inputs,
min_new_tokens=2,
max_new_tokens=2,
num_beams=1,
return_dict_in_generate=True,
output_scores=True,
)
option_token_ids = [
self.tokenizer.encode(op, add_special_tokens=False)[0]
for op in options
]
option_scores = outputs.scores[-1][0][option_token_ids]
option_scores += state
option_with_max_score = options[torch.argmax(option_scores)]
return option_with_max_score
def get_response(
self,
conv_dict: Dict[str, Any],
id2entity: Dict[int, str],
options: Tuple[str, Dict[str, str]],
state: List[float],
) -> Tuple[str, List[float]]:
"""Generates a response given a conversation context.
The method is based on the logic of the ask mode (i.e., see
`scripts/ask.py`). It consists of two steps: (1) choose to either
recommend items or generate a response, and (2) execute the chosen
step. Slightly deviates from the original implementation by not using
templates.
Args:
conv_dict: Conversation context.
id2entity: Mapping from entity id to entity name.
options: Prompt with options and dictionary of options.
state: State of the option choices.
Returns:
Generated response and updated state.
"""
generated_inputs, generated_response = self.get_conv(conv_dict)
options_letter = list(options[1].keys())
# Get the choice between recommend and generate
choice = self.get_choice(generated_inputs, options_letter, state)
if choice == options_letter[-1]:
# Generate a recommendation
recommended_items, _ = self.get_rec(conv_dict)
recommended_items_str = ""
for i, item_id in enumerate(recommended_items[0][:3]):
recommended_items_str += f"{i+1}: {id2entity[item_id]} \n"
response = (
"I would recommend the following items: \n"
f"{recommended_items_str}"
)
else:
# Original : Generate a response to ask for preferences. The
# fallback is to use the generated response.
# response = (
# options[1].get(choice, {}).get("template", generated_response)
# )
response = generated_response
# Update the state. Hack: penalize the choice to reduce the
# likelihood of selecting the same choice again
state[options_letter.index(choice)] += -1e5
return response, state
if __name__ == "__main__":
# print(sys.path)
kbrd = KBRD(
seed=42,
kg_dataset="redial",
debug=False,
hidden_size=128,
num_bases=8,
rec_model=f"/mnt/tangxinyu/crs/eval_model/redial_rec/best",
conv_model="/mnt/tangxinyu/crs/eval_model/redial_conv/final/",
encoder_layers=2,
decoder_layers=2,
attn_head=2,
resp_max_length=128,
text_hidden_size=300,
entity_hidden_size=128,
context_max_length=200,
entity_max_length=32,
tokenizer_path="../utils/tokenizer/bart-base",
)
# print(kbrd)
context_dict = {
"dialog_id": "20001",
"turn_id": 1,
"context": ["Hi I am looking for a movie like Super Troopers (2001)"],
"entity": ["Super Troopers (2001)"],
"rec": ["Police Academy (1984)"],
"resp": "You should watch Police Academy (1984)",
"template": [
"Hi I am looking for a movie like <mask>",
"You should watch <mask>",
],
}
preds, labels = kbrd.get_rec(context_dict)
gen_seq = kbrd.get_conv(context_dict)
|