File size: 9,536 Bytes
b599481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import math
import os
from typing import Optional, List, Union, Tuple

import torch
from loguru import logger
from torch import nn
from torch.nn import functional as F, CrossEntropyLoss
from torch_geometric.nn import RGCNConv
from transformers import BartPretrainedModel, BartConfig, BartModel
from transformers.modeling_outputs import Seq2SeqLMOutput

import sys

sys.path.append("..")

from src.model.utils import SelfAttention, shift_tokens_right


class KBRDforRec(nn.Module):
    def __init__(self, hidden_size, num_relations, num_bases, num_entities):
        super(KBRDforRec, self).__init__()
        # kg encoder
        self.kg_encoder = RGCNConv(
            hidden_size, hidden_size, num_relations=num_relations, num_bases=num_bases
        )
        self.node_embeds = nn.Parameter(torch.empty(num_entities, hidden_size))
        stdv = math.sqrt(6.0 / (self.node_embeds.size(-2) + self.node_embeds.size(-1)))
        self.node_embeds.data.uniform_(-stdv, stdv)

        self.special_token_embeddings = nn.Parameter(
            torch.zeros(1, hidden_size), requires_grad=False
        )

        self.attn = SelfAttention(hidden_size)

    def get_node_embeds(self, edge_index, edge_type):
        node_embeds = self.kg_encoder(self.node_embeds, edge_index, edge_type)
        node_embeds = torch.cat([node_embeds, self.special_token_embeddings], dim=0)
        return node_embeds

    def forward(
        self,
        entity_embeds=None,
        entity_ids=None,
        edge_index=None,
        edge_type=None,
        node_embeds=None,
        entity_mask=None,
        labels=None,
        reduction="none",
    ):
        if node_embeds is None:
            node_embeds = self.get_node_embeds(edge_index, edge_type)

        if entity_embeds is None:
            entity_embeds = node_embeds[entity_ids]  # (bs, seq_len, hs)

        user_embeds = self.attn(entity_embeds, entity_mask)

        logits = user_embeds @ node_embeds.T  # (bs, n_node)
        loss = None
        if labels is not None:
            loss = F.cross_entropy(logits, labels, reduction=reduction)

        return {"loss": loss, "logit": logits, "user_embeds": user_embeds}

    def save(self, save_dir):
        os.makedirs(save_dir, exist_ok=True)
        save_path = os.path.join(save_dir, "model.pt")
        torch.save(self.state_dict(), save_path)

    def load(self, load_dir):
        load_path = os.path.join(load_dir, "model.pt")
        missing_keys, unexpected_keys = self.load_state_dict(
            torch.load(load_path, map_location=torch.device("cpu"))
        )


class KBRDforConv(BartPretrainedModel):
    base_model_prefix = "model"
    _keys_to_ignore_on_load_missing = [r"final_logits_bias", r"lm_head.weight"]

    def __init__(self, config: BartConfig, user_hidden_size):
        super().__init__(config)
        self.model = BartModel(config)
        self.register_buffer(
            "final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))
        )
        self.lm_head = nn.Linear(
            config.d_model, self.model.shared.num_embeddings, bias=False
        )

        self.rec_proj = nn.Linear(user_hidden_size, self.model.shared.num_embeddings)

        # Initialize weights and apply final processing
        self.post_init()

    def get_encoder(self):
        return self.model.get_encoder()

    def get_decoder(self):
        return self.model.get_decoder()

    def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
        new_embeddings = super().resize_token_embeddings(new_num_tokens)
        self._resize_final_logits_bias(new_num_tokens)
        return new_embeddings

    def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
        old_num_tokens = self.final_logits_bias.shape[-1]
        if new_num_tokens <= old_num_tokens:
            new_bias = self.final_logits_bias[:, :new_num_tokens]
        else:
            extra_bias = torch.zeros(
                (1, new_num_tokens - old_num_tokens),
                device=self.final_logits_bias.device,
            )
            new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
        self.register_buffer("final_logits_bias", new_bias)

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[List[torch.FloatTensor]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        decoder_user_embeds=None,
    ) -> Union[Tuple, Seq2SeqLMOutput]:
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if labels is not None:
            if use_cache:
                logger.warning(
                    "The `use_cache` argument is changed to `False` since `labels` is provided."
                )
            use_cache = False
            if decoder_input_ids is None and decoder_inputs_embeds is None:
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        lm_logits = (
            self.lm_head(outputs[0])
            + self.final_logits_bias
            + self.rec_proj(decoder_user_embeds).unsqueeze(1)
        )

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(
                lm_logits.view(-1, self.config.vocab_size), labels.view(-1)
            )

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return (
                ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
            )

        return Seq2SeqLMOutput(
            loss=masked_lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

    def prepare_inputs_for_generation(
        self,
        decoder_input_ids,
        past=None,
        attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        use_cache=None,
        encoder_outputs=None,
        decoder_user_embeds=None,
        **kwargs
    ):
        # cut decoder_input_ids if past is used
        if past is not None:
            decoder_input_ids = decoder_input_ids[:, -1:]

        return {
            "input_ids": None,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
            "past_key_values": past,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
            "use_cache": use_cache,  # change this to avoid caching (presumably for debugging)
            "decoder_user_embeds": decoder_user_embeds,
        }

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return shift_tokens_right(
            labels, self.config.pad_token_id, self.config.decoder_start_token_id
        )

    @staticmethod
    def _reorder_cache(past, beam_idx):
        reordered_past = ()
        for layer_past in past:
            # cached cross_attention states don't have to be reordered -> they are always the same
            reordered_past += (
                tuple(
                    past_state.index_select(0, beam_idx)
                    for past_state in layer_past[:2]
                )
                + layer_past[2:],
            )
        return reordered_past