File size: 26,902 Bytes
b599481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
835d6ca
2f4001e
 
 
b599481
 
 
835d6ca
2f4001e
 
 
 
835d6ca
 
 
2f4001e
 
 
 
 
 
835d6ca
b599481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
"""Movie recommender and metadata integration component for CRB-CRS model.

This component is responsible for replacing placeholders, if any, in the
retrieved response with appropriate movie information.

Adapted from original code:
https://github.com/ahtsham58/CRB-CRS/tree/main

TODO: Improve the code to reduce redundancy and improve efficiency.
"""

from __future__ import annotations

import logging
import os
import pickle
import random
import re
from typing import List, Tuple

import numpy as np
import pandas as pd
from sklearn.decomposition import TruncatedSVD
from sklearn.metrics.pairwise import linear_kernel

from src.model.crb_crs.recommender.recommender import Recommender
from src.model.crb_crs.retriever.retriever import CRS_PREFIX
from src.model.crb_crs.utils_preprocessing import get_preference_keywords

DEFAULT_MOVIELENS_DATA_FOLDER = "data/movielens"


class MovieRecommender(Recommender):
    def __init__(
        self,
        matrix_factorization_folder: str,
        movielens_data_folder: str = DEFAULT_MOVIELENS_DATA_FOLDER,
    ) -> None:
        """Initializes the recommender.

        Args:
            matrix_factorization_folder: Path to folder with matrix
              factorization data.
            movielens_data_folder: Path to folder with MovieLens data.
        """
        super().__init__()
        self.movielens_data_folder = movielens_data_folder
        self.movie_metadata_df = pd.read_csv(
            os.path.join(self.movielens_data_folder, "movies_metadata.csv")
        )

        os.makedirs(matrix_factorization_folder, exist_ok=True)
        self.matrix_factorization_folder = matrix_factorization_folder

        model_path = os.path.join(
            self.matrix_factorization_folder, "matrix_factorization.npy"
        )
        index_path = os.path.join(
            self.matrix_factorization_folder, "movielens_index.pkl"
        )
        if os.path.exists(model_path) and os.path.exists(index_path):
            self.matrix_factorization = np.load(model_path)
            self.movielens_index = pickle.load(open(index_path, "rb"))
        else:
            self.initialize_truncated_svd(save=True)

        self._create_cosine_similarity_matrix()

    def _create_cosine_similarity_matrix(self) -> None:
        """Creates the cosine similarity matrix."""
        self.content_matrix, self.movie_mentions_df = (
            self._get_content_matrix()
        )
        self.cosine_similarity_matrix = linear_kernel(
            self.content_matrix, self.content_matrix
        )

    def _get_content_matrix(self) -> Tuple[np.ndarray, pd.DataFrame]:
        """Gets the content matrix for movies.

        The data is taken from the MovieLens dataset.

        Returns:
            Tuple of content matrix and DataFrame.
        """
        movie_ratings = pd.read_csv(
            os.path.join(self.movielens_data_folder, "movies_rating_data.csv"),
            encoding="Latin1",
        ).reset_index()
        movies = pd.read_csv(
            os.path.join(self.movielens_data_folder, "movies_data.csv"),
            encoding="Latin1",
        )

        # Add column year to movie ratings
        movie_ratings["year"] = movie_ratings["title"].str.extract(
            r"\((\d{4})\)"
        )

        # Get list of all genres
        genres = set()
        for genre in movies["genres"].str.split("|"):
            genres.update(genre)

        # Create a column for each genre
        movies_with_genres = movie_ratings.copy()
        for genre in genres:
            movies_with_genres[genre] = movies_with_genres[
                "genres"
            ].str.contains(genre)

        movies_with_genres = movies_with_genres.set_index("databaseId")
        movies_with_genres["title_formatted"] = movies_with_genres[
            "title"
        ].apply(lambda x: re.sub(r"\(\d{4}\)$", "", x).lower().strip())
        movies_content = movies_with_genres.drop(
            columns=[
                "movieId",
                "rating_mean",
                "title",
                "title_formatted",
                "genres",
                "year",
                "imdbID",
                "directors",
                "actors",
                "movielensID",
                "country",
            ]
        )
        movies_content_matrix = movies_content.values
        movies_content_matrix = np.delete(movies_content_matrix, 0, 1)
        movies_content_matrix = np.delete(movies_content_matrix, 0, 1)
        return movies_content_matrix, movies_with_genres

    def initialize_truncated_svd(self, save: bool = False) -> None:
        """Initializes the TruncatedSVD model.

        This model is used for matrix factorization.
        """
        self.user_ratings_df = pd.read_csv(
            "data/movielens/ratings_latest.csv",
            usecols=["userId", "movieId", "rating"],
        )[:1500000]
        self.movie_df = pd.read_csv(
            os.path.join(self.movielens_data_folder, "movies.csv")
        )
        self.movie_df["year"] = self.movie_df["title"].str.extract(
            r"\((\d{4})\)"
        )

        movie_ratings_df = pd.merge(
            self.user_ratings_df, self.movie_df, on="movieId"
        ).dropna(axis=0, subset=["title"])
        user_ratings = (
            movie_ratings_df.groupby(by="title")["rating"]
            .mean()
            .reset_index()
            .rename(columns={"rating": "ratingMean"})[["title", "ratingMean"]]
            .merge(movie_ratings_df, on="title", how="right")
            .drop_duplicates(["userId", "title"])
            .pivot(index="userId", columns="title", values="rating")
            .fillna(0)
        )

        x = user_ratings.values.T

        svd = TruncatedSVD(n_components=20, random_state=42)
        matrix = svd.fit_transform(x)
        self.matrix_factorization = np.corrcoef(matrix)
        self.movielens_index = user_ratings.columns

        if save:
            np.save(
                os.path.join(
                    self.matrix_factorization_folder,
                    "matrix_factorization.npy",
                ),
                self.matrix_factorization,
            )
            with open(
                os.path.join(
                    self.matrix_factorization_folder, "movielens_index.pkl"
                ),
                "wb",
            ) as f:
                pickle.dump(self.movielens_index, f)

    def get_similar_items_ratings(
        self,
        input_item_id: str,
        num_recommendation: int,
        recommended_items: List[str],
    ) -> List[str]:
        """Gets the most similar items based on the ratings.

        Args:
            input_item_id: Input item ID.
            num_recommendation: Number of recommendations to return.
            recommended_items: List of already recommended items.

        Returns:
            List of similar items.
        """
        similar_movies_titles = []

        try:
            title = self.get_movie_title(input_item_id)

            if len(title) < 2:
                return []

            genres = (
                self.movie_mentions_df.loc[[int(input_item_id)]]["genres"]
                .iloc[0]
                .split("|")
            )
            idx = self.movielens_index.values.tolist().index(title)
            similarity_scores = list(enumerate(self.matrix_factorization[idx]))
            similarity_scores = sorted(
                similarity_scores, key=lambda x: x[1], reverse=True
            )[1:]
            similar_movies = pd.DataFrame(
                [self.movielens_index[i[0]] for i in similarity_scores],
                columns=["title"],
            )
            similar_movies = similar_movies.merge(
                self.movie_df[["title", "genres", "year", "ratingMean"]],
                how="left",
                on="title",
            )
            similar_movies["matchCount"] = similar_movies["genres"].apply(
                lambda x: len(set(x.split("|")).intersection(genres))
            )
            similar_movies = similar_movies.sort_values(
                by="ratingMean", ascending=False
            ).reset_index()
            similar_movies = similar_movies.sort_values(
                by="year", ascending=False
            ).reset_index()
            similar_movies = similar_movies.sort_values(
                by="matchCount", ascending=False
            )

            similar_movies_titles = similar_movies["title"].values.tolist()
            similar_movies_titles = [
                movie
                for movie in similar_movies_titles
                if movie not in recommended_items
            ]
        except ValueError:
            logging.error(
                f"Movie title not found for movie ID {input_item_id}."
            )
            pass
        return similar_movies_titles[:num_recommendation]

    def get_similar_items_content(
        self,
        input_item_id: str,
        num_recommendation: int,
        recommended_items: List[str],
    ) -> List[str]:
        """Gets the most similar items based on the content.

        Args:
            input_item_id: Input item ID.
            num_recommendation: Number of recommendations to return.
            recommended_items: List of already recommended items.

        Returns:
            List of similar items.
        """
        similar_movies_titles = []
        try:
            content_df = self.movie_mentions_df.loc[
                :, ~self.movie_mentions_df.columns.str.contains("^Unnamed")
            ]
            idx = pd.Series(content_df.index, self.movie_mentions_df["title"])
            title = self.get_movie_title(input_item_id)

            if len(title) < 2:
                return []

            movie_index = idx[title]
            similarity_scores = self.cosine_similarity_matrix[
                movie_index
            ].tolist()
            scores = pd.DataFrame(
                similarity_scores, columns=["scores"]
            ).sort_values(by="scores", ascending=False)
            similar_movies_indices = scores.index.values.tolist()
            similar_movies = pd.DataFrame(
                content_df[["title", "genres", "year", "rating_mean"]].iloc[
                    similar_movies_indices
                ]
            )
            similar_movies = similar_movies[similar_movies["title"] != title]
            similar_movies = similar_movies.sort_values(
                by="rating_mean", ascending=False
            ).reset_index()
            similar_movies = similar_movies.sort_values(
                by="year", ascending=False
            ).reset_index()
            similar_movies_titles = similar_movies["title"].values.tolist()
            similar_movies_titles = [
                movie
                for movie in similar_movies_titles
                if movie not in recommended_items
            ]
        except Exception as e:
            logging.error(
                "An error occurred when getting similar items based on "
                f"content:\n{e}"
            )

        return similar_movies_titles[:num_recommendation]

    def get_similar_items_genre(
        self, genre: str, num_recommendation: int, recommended_items: List[str]
    ) -> List[str]:
        """Gets the most similar items based on the genre.

        Args:
            genre: Genre.
            num_recommendation: Number of recommendations to return.
            recommended_items: List of already recommended items.

        Returns:
            List of similar items.
        """
        similar_movies_titles = []
        # Convert genre to the format used in the dataset
        if genre.lower() == "scary":
            genre = "Horror"
        elif genre.lower() == "romantic" or genre.lower() == "romances":
            genre = "Romance"
        elif genre.lower() == "preference":
            genre = "Adventure"
        elif genre.lower() == "suspense":
            genre = "Thriller"
        elif genre.lower() == "funny":
            genre = "Comedy"
        elif genre.lower() == "comedies":
            genre = "Comedy"
        elif genre.lower() == "scifi":
            genre = "Science Fiction"
        elif genre.lower() == "kids":
            genre = "Comedy"
        elif genre.lower() == "mysteries":
            genre = "mystery"
        genre = genre.title()

        try:
            # Get movies with the specified genre
            movies_with_genre = self.movie_metadata_df[
                self.movie_metadata_df["genre"] == genre
            ]

            vote_counts = movies_with_genre[
                movies_with_genre["vote_count"].notnull()
            ]["vote_count"].astype(int)
            vote_averages = movies_with_genre[
                movies_with_genre["vote_average"].notnull()
            ]["vote_average"].astype(int)
            C = vote_averages.mean()
            m = vote_counts.quantile(0.85)

            similar_movies = movies_with_genre[
                (movies_with_genre["vote_count"] >= m)
                & (movies_with_genre["vote_count"].notnull())
                & (movies_with_genre["vote_average"].notnull())
            ][
                [
                    "title",
                    "year",
                    "vote_count",
                    "vote_average",
                    "popularity",
                    "genre",
                ]
            ]
            similar_movies["vote_count"] = similar_movies["vote_count"].astype(
                int
            )
            similar_movies["vote_average"] = similar_movies[
                "vote_average"
            ].astype(int)
            similar_movies["weighted_rating"] = similar_movies.apply(
                lambda x: (
                    (
                        x["vote_count"]
                        / (x["vote_count"] + m)
                        * x["vote_average"]
                    )
                    + (m / (m + x["vote_count"]) * C)
                ),
                axis=1,
            )
            similar_movies = similar_movies.sort_values(
                by="weighted_rating", ascending=False
            ).reset_index()
            similar_movies = similar_movies.sort_values(
                by="year", ascending=False
            )
            similar_movies_titles = similar_movies["title"].values.tolist()
            similar_movies_titles = [
                movie
                for movie in similar_movies_titles
                if movie not in recommended_items
            ]
        except (RuntimeError, TypeError, NameError) as e:
            logging.error(
                "An error occurred when getting similar items based on genre:\n"
                f"{e}"
            )
        return similar_movies_titles[:num_recommendation]

    def detect_previous_item_mentions(
        self, context: List[str], is_user: bool
    ) -> List[str]:
        """Detects items mentioned in the conversation context.

        Args:
            context: Conversation context.
            is_user: Whether the context is from the user or the agent.

        Returns:
            List of item ids corresponding to item mentioned in the
              conversation context.
        """
        mentioned_items = []
        if is_user:
            col = "title_formatted"
        else:
            col = "title"
        for utterance in context:
            for i, movie in enumerate(self.movie_mentions_df[col].values):
                if f" {movie}" in utterance:
                    movie_id = self.movie_mentions_df.index.values[i]
                    mentioned_items.append(movie_id)
        return mentioned_items

    def get_recommendations(self, context: List[str]) -> List[str]:
        """Gets recommendations.

        Args:
            context: Conversation context.

        Returns:
            List of recommendations.
        """
        recommended_items = []

        # Split the context into user and agent utterances. Assume that the
        # context starts with a user utterance and alternates between user and
        # agent utterances.
        user_context = [utt for utt in context[::2]]
        agent_context = [utt for utt in context[1::2]]

        # Detect items mentioned in the conversation context for each dialogue
        # participant
        user_previous_item_mentions = self.detect_previous_item_mentions(
            user_context, True
        )
        agent_previous_item_mentions = self.detect_previous_item_mentions(
            agent_context, False
        )

        # Get genre preferences per user utterance
        preferences_per_user_utterance = (
            self.get_user_preferences_per_utterance(user_context)
        )

        if len(user_previous_item_mentions) > 0:
            # Get recommendations based on the previous item mentions
            recommended_items = self.get_similar_items_ratings(
                user_previous_item_mentions[-1],
                len(user_previous_item_mentions),
                agent_previous_item_mentions,
            )
            if len(recommended_items) == 0:
                recommended_items = self.get_similar_items_content(
                    user_previous_item_mentions[-1],
                    len(user_previous_item_mentions),
                    agent_previous_item_mentions,
                )
        elif len(preferences_per_user_utterance[-1]) > 0:
            # Get recommendations based on last user utterance preferences
            recommended_items = self.get_similar_items_genre(
                preferences_per_user_utterance[-1][-1],
                len(preferences_per_user_utterance),
                agent_previous_item_mentions,
            )
        elif len(preferences_per_user_utterance) > 1:
            # Get recommendations based on the last mentioned genre preference
            for preferences in preferences_per_user_utterance[-2::-1]:
                if len(preferences) > 0:
                    genre = preferences[0]
                    break
            recommended_items = self.get_similar_items_genre(
                genre,
                len(agent_previous_item_mentions),
                agent_previous_item_mentions,
            )
        return recommended_items

    def get_user_preferences_per_utterance(
        self, user_context: List[str]
    ) -> List[List[str]]:
        """Gets user preferences per utterance.

        Args:
            user_context: User context (i.e., user utterances in history).

        Returns:
            List of user preferences per utterance.
        """

        preferences_per_user_utterance = [
            list(
                set(utt.split(" ")).intersection(
                    get_preference_keywords("movies")
                )
            )
            for utt in user_context
        ]

        return preferences_per_user_utterance

    def get_movie_title(self, movie_id: str) -> str:
        """Gets the movie title given the movie ID.

        Args:
            movie_id: Movie ID.

        Raises:
            KeyError: If the movie title is not found for the given movie ID.
            Exception: If an error occurs when getting the movie title.
            
        Returns:
            Movie title.
        """
        try:
            clean_movie_id = re.sub(r"\D", "", movie_id)
            title = self.movie_mentions_df.loc[[int(clean_movie_id)]][
                "title"
            ].iloc[0]
        except KeyError:
            title = ""
            logging.error(f"Movie title not found for movie ID {movie_id}.")
        except Exception as e:
            title = ""
            logging.error(
                f"An error occurred when getting movie title for movie ID "
                f"{movie_id}:\n{e}"
            )
        return title

    def replace_item_ids_with_recommendations(
        self,
        response: str,
        original_item_ids: List[str],
        recommended_items: List[str] = [],
    ) -> str:
        """Replaces item ids in a response with recommended items.

        If no recommended items are available, the item ids are replaced with
        their original titles.

        Args:
            response: Response containing item ids.
            original_item_ids: List of original item ids.
            recommended_items: List of recommended items. Defaults to an empty
              list.

        Returns:
            Response with item ids replaced by recommended items.
        """
        if len(original_item_ids) == len(recommended_items):
            for item_id, recommended_item in zip(
                original_item_ids, recommended_items
            ):
                response = response.replace(f"@{item_id}", recommended_item)
        else:
            # There is a mismatch between the number of item ids and the number
            # of recommended items. In this case, we replace item ids with
            # their original titles.
            for i, item_id in enumerate(original_item_ids):
                try:
                    title = recommended_items[i]
                except IndexError:
                    title = self.get_movie_title(item_id)
                response = response.replace(f"@{item_id}", title)
        return response

    def integrate_domain_metadata(
        self,
        context: List[str],
        response: str,
    ) -> str:
        """Integrates domain metadata into the response.

        In this case, the metadata consists of genre, plot, and actor
        information.

        Args:
            context: Conversation context
            response: Response to integrate domain metadata into.

        Returns:
            Response with domain metadata integrated.
        """
        # Get last movie mentioned by the agent
        agent_context = [utt for utt in context[1::2]]
        items = self.detect_previous_item_mentions(agent_context, False)
        last_movie_mentioned = items[-1] if len(items) > 0 else None

        last_user_utterance = context[-1].lower()

        if last_movie_mentioned is not None:
            movie_metadata = self.movie_mentions_df.loc[
                [int(last_movie_mentioned)]
            ]
            if last_user_utterance.__contains__(
                "who is"
            ) or last_user_utterance.lower().__contains__("who's"):
                # Integrate actor information
                actors = movie_metadata["actors"].iloc[0]
                if len(actors) > 0:
                    return f"{CRS_PREFIX} It stars {actors}."
            if (
                last_user_utterance.__contains__("it about")
                or last_user_utterance.__contains__("plot")
                or last_user_utterance.__contains__("that about")
            ):
                # Integrate plot information
                movie_title = re.sub(
                    r"\(\d{4}\)$", "", movie_metadata["title"].iloc[0]
                ).strip()
                plot = self.movie_metadata_df[
                    self.movie_metadata_df["title"] == movie_title
                ]["overview"].iloc[0]
                if len(plot) > 0:
                    return f"{CRS_PREFIX} {plot}"

        response_preference_tokens = list(
            set(response.split(" ")).intersection(
                get_preference_keywords("movies")
            )
        )
        if len(response_preference_tokens) > 0:
            # Integrate genre information

            # Not optimal before the movie ids are known before in the pipeline
            # TODO: Update implementation to improve efficiency
            response_movie_ids = self.detect_previous_item_mentions(
                [response], False
            )

            user_context = [utt for utt in context[::2]]
            preferences_per_user_utterance = (
                self.get_user_preferences_per_utterance(user_context)
            )
            if (
                len(response_movie_ids) > 0
                and len(preferences_per_user_utterance[-1]) > 0
            ):
                response = self.replace_genre(
                    response, response_preference_tokens, response_movie_ids[0]
                )
            elif len(preferences_per_user_utterance) > 1:
                for preferences in preferences_per_user_utterance[::-1]:
                    if len(preferences) > 0:
                        genre = preferences[0]
                        break
                return response.replace(
                    response_preference_tokens[-1],
                    genre,
                )
        return response

    def replace_genre(
        self, response: str, movie_preference_tokens: List[str], movie_id: str
    ):
        """Replaces genre in the response with the genre of the movie.

        Args:
            response: Response containing genre.
            movie_preference_tokens: List of movie preference tokens.
            movie_id: Movie ID.

        Returns:
            Response with genre replaced by the genre of the movie.
        """
        if (
            response.lower().__contains__("not a")
            and len(movie_preference_tokens) > 0
        ):
            return response

        movie_metadata = self.movie_mentions_df[[int(movie_id)]]
        genres = movie_metadata["genres"]
        if len(genres) > 0:
            genres = genres.iloc[0].split("|")
            for i, preference_token in enumerate(movie_preference_tokens):
                if i > len(genres):
                    response = response.replace(preference_token, "")
                else:
                    response = response.replace(preference_token, genres[i])
                    response = response.replace(
                        preference_token.title(), genres[i]
                    )
                    response = response.replace("comedy", "funny")
                    response = response.replace("romance", "romantic")
                    # Remove redundant genre mentions
                    temp = re.sub(r"\b(\w+)\b\s+\1\b", r"\1", response)
                    unique_words = dict.fromkeys(temp.split())
                    response = " ".join(unique_words)
        else:
            # Genre information is not available for the movie. Use a random
            # adjective as a placeholder.
            response = response.replace(
                movie_preference_tokens[0],
                random.choice([["good", "great", "nice", "awesome", "fine"]]),
            )
            for token in movie_preference_tokens[1:]:
                response = response.replace(token, "")
        return response


if __name__ == "__main__":
    recommender = MovieRecommender(
        "data/models/crb_crs_redial/matrix_factorization"
    )
    context = ["I like comedies."]
    recommendations = recommender.get_recommendations(context)
    print(recommendations)
    recommender.save("data/models/crb_crs_redial/movie_recommender.pkl")