File size: 26,902 Bytes
b599481 835d6ca 2f4001e b599481 835d6ca 2f4001e 835d6ca 2f4001e 835d6ca b599481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
"""Movie recommender and metadata integration component for CRB-CRS model.
This component is responsible for replacing placeholders, if any, in the
retrieved response with appropriate movie information.
Adapted from original code:
https://github.com/ahtsham58/CRB-CRS/tree/main
TODO: Improve the code to reduce redundancy and improve efficiency.
"""
from __future__ import annotations
import logging
import os
import pickle
import random
import re
from typing import List, Tuple
import numpy as np
import pandas as pd
from sklearn.decomposition import TruncatedSVD
from sklearn.metrics.pairwise import linear_kernel
from src.model.crb_crs.recommender.recommender import Recommender
from src.model.crb_crs.retriever.retriever import CRS_PREFIX
from src.model.crb_crs.utils_preprocessing import get_preference_keywords
DEFAULT_MOVIELENS_DATA_FOLDER = "data/movielens"
class MovieRecommender(Recommender):
def __init__(
self,
matrix_factorization_folder: str,
movielens_data_folder: str = DEFAULT_MOVIELENS_DATA_FOLDER,
) -> None:
"""Initializes the recommender.
Args:
matrix_factorization_folder: Path to folder with matrix
factorization data.
movielens_data_folder: Path to folder with MovieLens data.
"""
super().__init__()
self.movielens_data_folder = movielens_data_folder
self.movie_metadata_df = pd.read_csv(
os.path.join(self.movielens_data_folder, "movies_metadata.csv")
)
os.makedirs(matrix_factorization_folder, exist_ok=True)
self.matrix_factorization_folder = matrix_factorization_folder
model_path = os.path.join(
self.matrix_factorization_folder, "matrix_factorization.npy"
)
index_path = os.path.join(
self.matrix_factorization_folder, "movielens_index.pkl"
)
if os.path.exists(model_path) and os.path.exists(index_path):
self.matrix_factorization = np.load(model_path)
self.movielens_index = pickle.load(open(index_path, "rb"))
else:
self.initialize_truncated_svd(save=True)
self._create_cosine_similarity_matrix()
def _create_cosine_similarity_matrix(self) -> None:
"""Creates the cosine similarity matrix."""
self.content_matrix, self.movie_mentions_df = (
self._get_content_matrix()
)
self.cosine_similarity_matrix = linear_kernel(
self.content_matrix, self.content_matrix
)
def _get_content_matrix(self) -> Tuple[np.ndarray, pd.DataFrame]:
"""Gets the content matrix for movies.
The data is taken from the MovieLens dataset.
Returns:
Tuple of content matrix and DataFrame.
"""
movie_ratings = pd.read_csv(
os.path.join(self.movielens_data_folder, "movies_rating_data.csv"),
encoding="Latin1",
).reset_index()
movies = pd.read_csv(
os.path.join(self.movielens_data_folder, "movies_data.csv"),
encoding="Latin1",
)
# Add column year to movie ratings
movie_ratings["year"] = movie_ratings["title"].str.extract(
r"\((\d{4})\)"
)
# Get list of all genres
genres = set()
for genre in movies["genres"].str.split("|"):
genres.update(genre)
# Create a column for each genre
movies_with_genres = movie_ratings.copy()
for genre in genres:
movies_with_genres[genre] = movies_with_genres[
"genres"
].str.contains(genre)
movies_with_genres = movies_with_genres.set_index("databaseId")
movies_with_genres["title_formatted"] = movies_with_genres[
"title"
].apply(lambda x: re.sub(r"\(\d{4}\)$", "", x).lower().strip())
movies_content = movies_with_genres.drop(
columns=[
"movieId",
"rating_mean",
"title",
"title_formatted",
"genres",
"year",
"imdbID",
"directors",
"actors",
"movielensID",
"country",
]
)
movies_content_matrix = movies_content.values
movies_content_matrix = np.delete(movies_content_matrix, 0, 1)
movies_content_matrix = np.delete(movies_content_matrix, 0, 1)
return movies_content_matrix, movies_with_genres
def initialize_truncated_svd(self, save: bool = False) -> None:
"""Initializes the TruncatedSVD model.
This model is used for matrix factorization.
"""
self.user_ratings_df = pd.read_csv(
"data/movielens/ratings_latest.csv",
usecols=["userId", "movieId", "rating"],
)[:1500000]
self.movie_df = pd.read_csv(
os.path.join(self.movielens_data_folder, "movies.csv")
)
self.movie_df["year"] = self.movie_df["title"].str.extract(
r"\((\d{4})\)"
)
movie_ratings_df = pd.merge(
self.user_ratings_df, self.movie_df, on="movieId"
).dropna(axis=0, subset=["title"])
user_ratings = (
movie_ratings_df.groupby(by="title")["rating"]
.mean()
.reset_index()
.rename(columns={"rating": "ratingMean"})[["title", "ratingMean"]]
.merge(movie_ratings_df, on="title", how="right")
.drop_duplicates(["userId", "title"])
.pivot(index="userId", columns="title", values="rating")
.fillna(0)
)
x = user_ratings.values.T
svd = TruncatedSVD(n_components=20, random_state=42)
matrix = svd.fit_transform(x)
self.matrix_factorization = np.corrcoef(matrix)
self.movielens_index = user_ratings.columns
if save:
np.save(
os.path.join(
self.matrix_factorization_folder,
"matrix_factorization.npy",
),
self.matrix_factorization,
)
with open(
os.path.join(
self.matrix_factorization_folder, "movielens_index.pkl"
),
"wb",
) as f:
pickle.dump(self.movielens_index, f)
def get_similar_items_ratings(
self,
input_item_id: str,
num_recommendation: int,
recommended_items: List[str],
) -> List[str]:
"""Gets the most similar items based on the ratings.
Args:
input_item_id: Input item ID.
num_recommendation: Number of recommendations to return.
recommended_items: List of already recommended items.
Returns:
List of similar items.
"""
similar_movies_titles = []
try:
title = self.get_movie_title(input_item_id)
if len(title) < 2:
return []
genres = (
self.movie_mentions_df.loc[[int(input_item_id)]]["genres"]
.iloc[0]
.split("|")
)
idx = self.movielens_index.values.tolist().index(title)
similarity_scores = list(enumerate(self.matrix_factorization[idx]))
similarity_scores = sorted(
similarity_scores, key=lambda x: x[1], reverse=True
)[1:]
similar_movies = pd.DataFrame(
[self.movielens_index[i[0]] for i in similarity_scores],
columns=["title"],
)
similar_movies = similar_movies.merge(
self.movie_df[["title", "genres", "year", "ratingMean"]],
how="left",
on="title",
)
similar_movies["matchCount"] = similar_movies["genres"].apply(
lambda x: len(set(x.split("|")).intersection(genres))
)
similar_movies = similar_movies.sort_values(
by="ratingMean", ascending=False
).reset_index()
similar_movies = similar_movies.sort_values(
by="year", ascending=False
).reset_index()
similar_movies = similar_movies.sort_values(
by="matchCount", ascending=False
)
similar_movies_titles = similar_movies["title"].values.tolist()
similar_movies_titles = [
movie
for movie in similar_movies_titles
if movie not in recommended_items
]
except ValueError:
logging.error(
f"Movie title not found for movie ID {input_item_id}."
)
pass
return similar_movies_titles[:num_recommendation]
def get_similar_items_content(
self,
input_item_id: str,
num_recommendation: int,
recommended_items: List[str],
) -> List[str]:
"""Gets the most similar items based on the content.
Args:
input_item_id: Input item ID.
num_recommendation: Number of recommendations to return.
recommended_items: List of already recommended items.
Returns:
List of similar items.
"""
similar_movies_titles = []
try:
content_df = self.movie_mentions_df.loc[
:, ~self.movie_mentions_df.columns.str.contains("^Unnamed")
]
idx = pd.Series(content_df.index, self.movie_mentions_df["title"])
title = self.get_movie_title(input_item_id)
if len(title) < 2:
return []
movie_index = idx[title]
similarity_scores = self.cosine_similarity_matrix[
movie_index
].tolist()
scores = pd.DataFrame(
similarity_scores, columns=["scores"]
).sort_values(by="scores", ascending=False)
similar_movies_indices = scores.index.values.tolist()
similar_movies = pd.DataFrame(
content_df[["title", "genres", "year", "rating_mean"]].iloc[
similar_movies_indices
]
)
similar_movies = similar_movies[similar_movies["title"] != title]
similar_movies = similar_movies.sort_values(
by="rating_mean", ascending=False
).reset_index()
similar_movies = similar_movies.sort_values(
by="year", ascending=False
).reset_index()
similar_movies_titles = similar_movies["title"].values.tolist()
similar_movies_titles = [
movie
for movie in similar_movies_titles
if movie not in recommended_items
]
except Exception as e:
logging.error(
"An error occurred when getting similar items based on "
f"content:\n{e}"
)
return similar_movies_titles[:num_recommendation]
def get_similar_items_genre(
self, genre: str, num_recommendation: int, recommended_items: List[str]
) -> List[str]:
"""Gets the most similar items based on the genre.
Args:
genre: Genre.
num_recommendation: Number of recommendations to return.
recommended_items: List of already recommended items.
Returns:
List of similar items.
"""
similar_movies_titles = []
# Convert genre to the format used in the dataset
if genre.lower() == "scary":
genre = "Horror"
elif genre.lower() == "romantic" or genre.lower() == "romances":
genre = "Romance"
elif genre.lower() == "preference":
genre = "Adventure"
elif genre.lower() == "suspense":
genre = "Thriller"
elif genre.lower() == "funny":
genre = "Comedy"
elif genre.lower() == "comedies":
genre = "Comedy"
elif genre.lower() == "scifi":
genre = "Science Fiction"
elif genre.lower() == "kids":
genre = "Comedy"
elif genre.lower() == "mysteries":
genre = "mystery"
genre = genre.title()
try:
# Get movies with the specified genre
movies_with_genre = self.movie_metadata_df[
self.movie_metadata_df["genre"] == genre
]
vote_counts = movies_with_genre[
movies_with_genre["vote_count"].notnull()
]["vote_count"].astype(int)
vote_averages = movies_with_genre[
movies_with_genre["vote_average"].notnull()
]["vote_average"].astype(int)
C = vote_averages.mean()
m = vote_counts.quantile(0.85)
similar_movies = movies_with_genre[
(movies_with_genre["vote_count"] >= m)
& (movies_with_genre["vote_count"].notnull())
& (movies_with_genre["vote_average"].notnull())
][
[
"title",
"year",
"vote_count",
"vote_average",
"popularity",
"genre",
]
]
similar_movies["vote_count"] = similar_movies["vote_count"].astype(
int
)
similar_movies["vote_average"] = similar_movies[
"vote_average"
].astype(int)
similar_movies["weighted_rating"] = similar_movies.apply(
lambda x: (
(
x["vote_count"]
/ (x["vote_count"] + m)
* x["vote_average"]
)
+ (m / (m + x["vote_count"]) * C)
),
axis=1,
)
similar_movies = similar_movies.sort_values(
by="weighted_rating", ascending=False
).reset_index()
similar_movies = similar_movies.sort_values(
by="year", ascending=False
)
similar_movies_titles = similar_movies["title"].values.tolist()
similar_movies_titles = [
movie
for movie in similar_movies_titles
if movie not in recommended_items
]
except (RuntimeError, TypeError, NameError) as e:
logging.error(
"An error occurred when getting similar items based on genre:\n"
f"{e}"
)
return similar_movies_titles[:num_recommendation]
def detect_previous_item_mentions(
self, context: List[str], is_user: bool
) -> List[str]:
"""Detects items mentioned in the conversation context.
Args:
context: Conversation context.
is_user: Whether the context is from the user or the agent.
Returns:
List of item ids corresponding to item mentioned in the
conversation context.
"""
mentioned_items = []
if is_user:
col = "title_formatted"
else:
col = "title"
for utterance in context:
for i, movie in enumerate(self.movie_mentions_df[col].values):
if f" {movie}" in utterance:
movie_id = self.movie_mentions_df.index.values[i]
mentioned_items.append(movie_id)
return mentioned_items
def get_recommendations(self, context: List[str]) -> List[str]:
"""Gets recommendations.
Args:
context: Conversation context.
Returns:
List of recommendations.
"""
recommended_items = []
# Split the context into user and agent utterances. Assume that the
# context starts with a user utterance and alternates between user and
# agent utterances.
user_context = [utt for utt in context[::2]]
agent_context = [utt for utt in context[1::2]]
# Detect items mentioned in the conversation context for each dialogue
# participant
user_previous_item_mentions = self.detect_previous_item_mentions(
user_context, True
)
agent_previous_item_mentions = self.detect_previous_item_mentions(
agent_context, False
)
# Get genre preferences per user utterance
preferences_per_user_utterance = (
self.get_user_preferences_per_utterance(user_context)
)
if len(user_previous_item_mentions) > 0:
# Get recommendations based on the previous item mentions
recommended_items = self.get_similar_items_ratings(
user_previous_item_mentions[-1],
len(user_previous_item_mentions),
agent_previous_item_mentions,
)
if len(recommended_items) == 0:
recommended_items = self.get_similar_items_content(
user_previous_item_mentions[-1],
len(user_previous_item_mentions),
agent_previous_item_mentions,
)
elif len(preferences_per_user_utterance[-1]) > 0:
# Get recommendations based on last user utterance preferences
recommended_items = self.get_similar_items_genre(
preferences_per_user_utterance[-1][-1],
len(preferences_per_user_utterance),
agent_previous_item_mentions,
)
elif len(preferences_per_user_utterance) > 1:
# Get recommendations based on the last mentioned genre preference
for preferences in preferences_per_user_utterance[-2::-1]:
if len(preferences) > 0:
genre = preferences[0]
break
recommended_items = self.get_similar_items_genre(
genre,
len(agent_previous_item_mentions),
agent_previous_item_mentions,
)
return recommended_items
def get_user_preferences_per_utterance(
self, user_context: List[str]
) -> List[List[str]]:
"""Gets user preferences per utterance.
Args:
user_context: User context (i.e., user utterances in history).
Returns:
List of user preferences per utterance.
"""
preferences_per_user_utterance = [
list(
set(utt.split(" ")).intersection(
get_preference_keywords("movies")
)
)
for utt in user_context
]
return preferences_per_user_utterance
def get_movie_title(self, movie_id: str) -> str:
"""Gets the movie title given the movie ID.
Args:
movie_id: Movie ID.
Raises:
KeyError: If the movie title is not found for the given movie ID.
Exception: If an error occurs when getting the movie title.
Returns:
Movie title.
"""
try:
clean_movie_id = re.sub(r"\D", "", movie_id)
title = self.movie_mentions_df.loc[[int(clean_movie_id)]][
"title"
].iloc[0]
except KeyError:
title = ""
logging.error(f"Movie title not found for movie ID {movie_id}.")
except Exception as e:
title = ""
logging.error(
f"An error occurred when getting movie title for movie ID "
f"{movie_id}:\n{e}"
)
return title
def replace_item_ids_with_recommendations(
self,
response: str,
original_item_ids: List[str],
recommended_items: List[str] = [],
) -> str:
"""Replaces item ids in a response with recommended items.
If no recommended items are available, the item ids are replaced with
their original titles.
Args:
response: Response containing item ids.
original_item_ids: List of original item ids.
recommended_items: List of recommended items. Defaults to an empty
list.
Returns:
Response with item ids replaced by recommended items.
"""
if len(original_item_ids) == len(recommended_items):
for item_id, recommended_item in zip(
original_item_ids, recommended_items
):
response = response.replace(f"@{item_id}", recommended_item)
else:
# There is a mismatch between the number of item ids and the number
# of recommended items. In this case, we replace item ids with
# their original titles.
for i, item_id in enumerate(original_item_ids):
try:
title = recommended_items[i]
except IndexError:
title = self.get_movie_title(item_id)
response = response.replace(f"@{item_id}", title)
return response
def integrate_domain_metadata(
self,
context: List[str],
response: str,
) -> str:
"""Integrates domain metadata into the response.
In this case, the metadata consists of genre, plot, and actor
information.
Args:
context: Conversation context
response: Response to integrate domain metadata into.
Returns:
Response with domain metadata integrated.
"""
# Get last movie mentioned by the agent
agent_context = [utt for utt in context[1::2]]
items = self.detect_previous_item_mentions(agent_context, False)
last_movie_mentioned = items[-1] if len(items) > 0 else None
last_user_utterance = context[-1].lower()
if last_movie_mentioned is not None:
movie_metadata = self.movie_mentions_df.loc[
[int(last_movie_mentioned)]
]
if last_user_utterance.__contains__(
"who is"
) or last_user_utterance.lower().__contains__("who's"):
# Integrate actor information
actors = movie_metadata["actors"].iloc[0]
if len(actors) > 0:
return f"{CRS_PREFIX} It stars {actors}."
if (
last_user_utterance.__contains__("it about")
or last_user_utterance.__contains__("plot")
or last_user_utterance.__contains__("that about")
):
# Integrate plot information
movie_title = re.sub(
r"\(\d{4}\)$", "", movie_metadata["title"].iloc[0]
).strip()
plot = self.movie_metadata_df[
self.movie_metadata_df["title"] == movie_title
]["overview"].iloc[0]
if len(plot) > 0:
return f"{CRS_PREFIX} {plot}"
response_preference_tokens = list(
set(response.split(" ")).intersection(
get_preference_keywords("movies")
)
)
if len(response_preference_tokens) > 0:
# Integrate genre information
# Not optimal before the movie ids are known before in the pipeline
# TODO: Update implementation to improve efficiency
response_movie_ids = self.detect_previous_item_mentions(
[response], False
)
user_context = [utt for utt in context[::2]]
preferences_per_user_utterance = (
self.get_user_preferences_per_utterance(user_context)
)
if (
len(response_movie_ids) > 0
and len(preferences_per_user_utterance[-1]) > 0
):
response = self.replace_genre(
response, response_preference_tokens, response_movie_ids[0]
)
elif len(preferences_per_user_utterance) > 1:
for preferences in preferences_per_user_utterance[::-1]:
if len(preferences) > 0:
genre = preferences[0]
break
return response.replace(
response_preference_tokens[-1],
genre,
)
return response
def replace_genre(
self, response: str, movie_preference_tokens: List[str], movie_id: str
):
"""Replaces genre in the response with the genre of the movie.
Args:
response: Response containing genre.
movie_preference_tokens: List of movie preference tokens.
movie_id: Movie ID.
Returns:
Response with genre replaced by the genre of the movie.
"""
if (
response.lower().__contains__("not a")
and len(movie_preference_tokens) > 0
):
return response
movie_metadata = self.movie_mentions_df[[int(movie_id)]]
genres = movie_metadata["genres"]
if len(genres) > 0:
genres = genres.iloc[0].split("|")
for i, preference_token in enumerate(movie_preference_tokens):
if i > len(genres):
response = response.replace(preference_token, "")
else:
response = response.replace(preference_token, genres[i])
response = response.replace(
preference_token.title(), genres[i]
)
response = response.replace("comedy", "funny")
response = response.replace("romance", "romantic")
# Remove redundant genre mentions
temp = re.sub(r"\b(\w+)\b\s+\1\b", r"\1", response)
unique_words = dict.fromkeys(temp.split())
response = " ".join(unique_words)
else:
# Genre information is not available for the movie. Use a random
# adjective as a placeholder.
response = response.replace(
movie_preference_tokens[0],
random.choice([["good", "great", "nice", "awesome", "fine"]]),
)
for token in movie_preference_tokens[1:]:
response = response.replace(token, "")
return response
if __name__ == "__main__":
recommender = MovieRecommender(
"data/models/crb_crs_redial/matrix_factorization"
)
context = ["I like comedies."]
recommendations = recommender.get_recommendations(context)
print(recommendations)
recommender.save("data/models/crb_crs_redial/movie_recommender.pkl")
|