CRSArena / script /chat.py
Nolwenn
Initial commit
b599481
raw
history blame
16.7 kB
import argparse
import copy
import json
import os
import random
import re
import sys
import time
import typing
import warnings
import nltk
import openai
import tiktoken
from loguru import logger
from tenacity import Retrying, _utils, retry_if_not_exception_type
from tenacity.stop import stop_base
from tenacity.wait import wait_base
from thefuzz import fuzz
sys.path.append("..")
from model.crs_model import CRSModel
from src.model.utils import get_entity
warnings.filterwarnings("ignore")
def get_exist_dialog_set():
exist_id_set = set()
for file in os.listdir(save_dir):
file_id = os.path.splitext(file)[0]
exist_id_set.add(file_id)
return exist_id_set
def my_before_sleep(retry_state):
logger.debug(
f"Retrying: attempt {retry_state.attempt_number} ended with: {retry_state.outcome}, spend {retry_state.seconds_since_start} in total"
)
class my_wait_exponential(wait_base):
def __init__(
self,
multiplier: typing.Union[int, float] = 1,
max: _utils.time_unit_type = _utils.MAX_WAIT, # noqa
exp_base: typing.Union[int, float] = 2,
min: _utils.time_unit_type = 0, # noqa
) -> None:
self.multiplier = multiplier
self.min = _utils.to_seconds(min)
self.max = _utils.to_seconds(max)
self.exp_base = exp_base
def __call__(self, retry_state: "RetryCallState") -> float:
if retry_state.outcome == openai.error.Timeout:
return 0
try:
exp = self.exp_base ** (retry_state.attempt_number - 1)
result = self.multiplier * exp
except OverflowError:
return self.max
return max(max(0, self.min), min(result, self.max))
class my_stop_after_attempt(stop_base):
"""Stop when the previous attempt >= max_attempt."""
def __init__(self, max_attempt_number: int) -> None:
self.max_attempt_number = max_attempt_number
def __call__(self, retry_state: "RetryCallState") -> bool:
if retry_state.outcome == openai.error.Timeout:
retry_state.attempt_number -= 1
return retry_state.attempt_number >= self.max_attempt_number
def annotate_completion(prompt, logit_bias=None):
if logit_bias is None:
logit_bias = {}
request_timeout = 20
for attempt in Retrying(
reraise=True,
retry=retry_if_not_exception_type(
(
openai.error.InvalidRequestError,
openai.error.AuthenticationError,
)
),
wait=my_wait_exponential(min=1, max=60),
stop=(my_stop_after_attempt(8)),
):
with attempt:
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0,
max_tokens=128,
stop="Recommender",
logit_bias=logit_bias,
request_timeout=request_timeout,
)["choices"][0]["text"]
request_timeout = min(300, request_timeout * 2)
return response
def get_instruction(dataset):
if dataset.startswith("redial"):
item_with_year = True
elif dataset.startswith("opendialkg"):
item_with_year = False
if item_with_year is True:
recommender_instruction = """You are a recommender chatting with the user to provide recommendation. You must follow the instructions below during chat.
If you do not have enough information about user preference, you should ask the user for his preference.
If you have enough information about user preference, you can give recommendation."""
seeker_instruction_template = """You are a seeker chatting with a recommender for recommendation. Your target items: {}. You must follow the instructions below during chat.
If the recommender recommend {}, you should accept.
If the recommender recommend other items, you should refuse them and provide the information about {}. You should never directly tell the target item title.
If the recommender asks for your preference, you should provide the information about {}. You should never directly tell the target item title.
"""
else:
recommender_instruction = """You are a recommender chatting with the user to provide recommendation. You must follow the instructions below during chat.
If you do not have enough information about user preference, you should ask the user for his preference.
If you have enough information about user preference, you can give recommendation."""
seeker_instruction_template = """You are a seeker chatting with a recommender for recommendation. Your target items: {}. You must follow the instructions below during chat.
If the recommender recommend {}, you should accept.
If the recommender recommend other items, you should refuse them and provide the information about {}. You should never directly tell the target item title.
If the recommender asks for your preference, you should provide the information about {}. You should never directly tell the target item title.
"""
return recommender_instruction, seeker_instruction_template
def get_model_args(model_name):
if model_name == "kbrd":
args_dict = {
"debug": args.debug,
"kg_dataset": args.kg_dataset,
"hidden_size": args.hidden_size,
"entity_hidden_size": args.entity_hidden_size,
"num_bases": args.num_bases,
"rec_model": args.rec_model,
"conv_model": args.conv_model,
"context_max_length": args.context_max_length,
"entity_max_length": args.entity_max_length,
"tokenizer_path": args.tokenizer_path,
"encoder_layers": args.encoder_layers,
"decoder_layers": args.decoder_layers,
"text_hidden_size": args.text_hidden_size,
"attn_head": args.attn_head,
"resp_max_length": args.resp_max_length,
"seed": args.seed,
}
elif model_name == "barcor":
args_dict = {
"debug": args.debug,
"kg_dataset": args.kg_dataset,
"rec_model": args.rec_model,
"conv_model": args.conv_model,
"context_max_length": args.context_max_length,
"resp_max_length": args.resp_max_length,
"tokenizer_path": args.tokenizer_path,
"seed": args.seed,
}
elif model_name == "unicrs":
args_dict = {
"debug": args.debug,
"seed": args.seed,
"kg_dataset": args.kg_dataset,
"tokenizer_path": args.tokenizer_path,
"context_max_length": args.context_max_length,
"entity_max_length": args.entity_max_length,
"resp_max_length": args.resp_max_length,
"text_tokenizer_path": args.text_tokenizer_path,
"rec_model": args.rec_model,
"conv_model": args.conv_model,
"model": args.model,
"num_bases": args.num_bases,
"text_encoder": args.text_encoder,
}
elif model_name == "chatgpt":
args_dict = {
"seed": args.seed,
"debug": args.debug,
"kg_dataset": args.kg_dataset,
}
else:
raise Exception("do not support this model")
return args_dict
if __name__ == "__main__":
local_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument("--api_key")
parser.add_argument(
"--dataset", type=str, choices=["redial_eval", "opendialkg_eval"]
)
parser.add_argument("--turn_num", type=int, default=5)
parser.add_argument(
"--crs_model",
type=str,
choices=["kbrd", "barcor", "unicrs", "chatgpt"],
)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--kg_dataset", type=str, choices=["redial", "opendialkg"])
# model_detailed
parser.add_argument("--hidden_size", type=int)
parser.add_argument("--entity_hidden_size", type=int)
parser.add_argument("--num_bases", type=int, default=8)
parser.add_argument("--context_max_length", type=int)
parser.add_argument("--entity_max_length", type=int)
# model
parser.add_argument("--rec_model", type=str)
parser.add_argument("--conv_model", type=str)
# conv
parser.add_argument("--tokenizer_path", type=str)
parser.add_argument("--encoder_layers", type=int)
parser.add_argument("--decoder_layers", type=int)
parser.add_argument("--text_hidden_size", type=int)
parser.add_argument("--attn_head", type=int)
parser.add_argument("--resp_max_length", type=int)
# prompt
parser.add_argument("--model", type=str)
parser.add_argument("--text_tokenizer_path", type=str)
parser.add_argument("--text_encoder", type=str)
args = parser.parse_args()
openai.api_key = args.api_key
save_dir = f"../save_{args.turn_num}/chat/{args.crs_model}/{args.dataset}"
os.makedirs(save_dir, exist_ok=True)
random.seed(args.seed)
encoding = tiktoken.encoding_for_model("text-davinci-003")
logit_bias = {encoding.encode(str(score))[0]: 10 for score in range(3)}
# recommender
model_args = get_model_args(args.crs_model)
recommender = CRSModel(crs_model=args.crs_model, **model_args)
recommender_instruction, seeker_instruction_template = get_instruction(args.dataset)
with open(f"../data/{args.kg_dataset}/entity2id.json", "r", encoding="utf-8") as f:
entity2id = json.load(f)
id2entity = {}
for k, v in entity2id.items():
id2entity[int(v)] = k
entity_list = list(entity2id.keys())
dialog_id2data = {}
with open(
f"../data/{args.dataset}/test_data_processed.jsonl", encoding="utf-8"
) as f:
lines = f.readlines()
for line in lines:
line = json.loads(line)
dialog_id = str(line["dialog_id"]) + "_" + str(line["turn_id"])
dialog_id2data[dialog_id] = line
dialog_id_set = set(dialog_id2data.keys()) - get_exist_dialog_set()
while len(dialog_id_set) > 0:
print(len(dialog_id_set))
dialog_id = random.choice(tuple(dialog_id_set))
data = dialog_id2data[dialog_id]
conv_dict = copy.deepcopy(data) # for model
context = conv_dict["context"]
goal_item_list = [f'"{item}"' for item in conv_dict["rec"]]
goal_item_str = ", ".join(goal_item_list)
seeker_prompt = seeker_instruction_template.format(
goal_item_str, goal_item_str, goal_item_str, goal_item_str
)
context_dict = [] # for save
for i, text in enumerate(context):
if len(text) == 0:
continue
if i % 2 == 0:
role_str = "user"
seeker_prompt += f"Seeker: {text}\n"
else:
role_str = "assistant"
seeker_prompt += f"Recommender: {text}\n"
context_dict.append({"role": role_str, "content": text})
rec_success = False
recommendation_template = "I would recommend the following items: {}:"
for i in range(0, args.turn_num):
# rec only
rec_items, rec_labels = recommender.get_rec(conv_dict)
for rec_label in rec_labels:
if rec_label in rec_items[0]:
rec_success = True
break
# rec only
_, recommender_text = recommender.get_conv(conv_dict)
# barcor
if args.crs_model == "barcor":
recommender_text = recommender_text.lstrip("System;:")
recommender_text = recommender_text.strip()
# unicrs
if args.crs_model == "unicrs":
if args.dataset.startswith("redial"):
movie_token = "<movie>"
else:
movie_token = "<mask>"
recommender_text = recommender_text[
recommender_text.rfind("System:") + len("System:") + 1 :
]
for i in range(str.count(recommender_text, movie_token)):
recommender_text = recommender_text.replace(
movie_token, id2entity[rec_items[i]], 1
)
recommender_text = recommender_text.strip()
if rec_success is True or i == args.turn_num - 1:
rec_items_str = ""
for j, rec_item in enumerate(rec_items[0][:50]):
rec_items_str += f"{j+1}: {id2entity[rec_item]}\n"
recommendation_template = recommendation_template.format(rec_items_str)
recommender_text = recommendation_template + recommender_text
# public
recommender_resp_entity = get_entity(recommender_text, entity_list)
conv_dict["context"].append(recommender_text)
conv_dict["entity"] += recommender_resp_entity
conv_dict["entity"] = list(set(conv_dict["entity"]))
context_dict.append(
{
"role": "assistant",
"content": recommender_text,
"entity": recommender_resp_entity,
"rec_items": rec_items[0],
"rec_success": rec_success,
}
)
seeker_prompt += f"Recommender: {recommender_text}\nSeeker:"
# seeker
year_pattern = re.compile(r"\(\d+\)")
goal_item_no_year_list = [
year_pattern.sub("", rec_item).strip() for rec_item in goal_item_list
]
seeker_text = annotate_completion(seeker_prompt).strip()
seeker_response_no_movie_list = []
for sent in nltk.sent_tokenize(seeker_text):
use_sent = True
for rec_item_str in goal_item_list + goal_item_no_year_list:
if fuzz.partial_ratio(rec_item_str.lower(), sent.lower()) > 90:
use_sent = False
break
if use_sent is True:
seeker_response_no_movie_list.append(sent)
seeker_response = " ".join(seeker_response_no_movie_list)
if not rec_success:
seeker_response = "Sorry, " + seeker_response
seeker_prompt += f" {seeker_response}\n"
# public
seeker_resp_entity = get_entity(seeker_text, entity_list)
context_dict.append(
{
"role": "user",
"content": seeker_text,
"entity": seeker_resp_entity,
}
)
conv_dict["context"].append(seeker_text)
conv_dict["entity"] += seeker_resp_entity
conv_dict["entity"] = list(set(conv_dict["entity"]))
if rec_success:
break
# score persuativeness
conv_dict["context"] = context_dict
data["simulator_dialog"] = conv_dict
persuasiveness_template = """Does the explanation make you want to accept the recommendation? Please give your score.
If mention one of [{}], give 2.
Else if you think recommended items are worse than [{}], give 0.
Else if you think recommended items are comparable to [{}] according to the explanation, give 1.
Else if you think recommended items are better than [{}] according to the explanation, give 2.
Only answer the score number."""
persuasiveness_template = persuasiveness_template.format(
goal_item_str, goal_item_str, goal_item_str, goal_item_str
)
prompt_str_for_persuasiveness = seeker_prompt + persuasiveness_template
prompt_str_for_persuasiveness += "\nSeeker:"
persuasiveness_score = annotate_completion(
prompt_str_for_persuasiveness, logit_bias
).strip()
data["persuasiveness_score"] = persuasiveness_score
# save
with open(f"{save_dir}/{dialog_id}.json", "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
dialog_id_set -= get_exist_dialog_set()