|
from typing import Optional, List, Union, Tuple |
|
|
|
import torch |
|
from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss |
|
from transformers import BartPretrainedModel, BartConfig, BartModel |
|
|
|
|
|
from transformers.models.bart.modeling_bart import BartClassificationHead |
|
from transformers.utils import ModelOutput |
|
|
|
|
|
class Seq2SeqSequenceClassifierOutput(ModelOutput): |
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
sentence_representation: torch.FloatTensor = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
encoder_last_hidden_state: Optional[torch.FloatTensor] = None |
|
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
class BartForSequenceClassification(BartPretrainedModel): |
|
def __init__(self, config: BartConfig, **kwargs): |
|
super().__init__(config, **kwargs) |
|
self.model = BartModel(config) |
|
self.classification_head = BartClassificationHead( |
|
config.d_model, |
|
config.d_model, |
|
config.num_labels, |
|
config.classifier_dropout, |
|
) |
|
self.model._init_weights(self.classification_head.dense) |
|
self.model._init_weights(self.classification_head.out_proj) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
decoder_head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
if labels is not None: |
|
use_cache = False |
|
|
|
if input_ids is None and inputs_embeds is not None: |
|
raise NotImplementedError( |
|
f"Passing input embeddings is currently not supported for {self.__class__.__name__}" |
|
) |
|
|
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
decoder_input_ids=decoder_input_ids, |
|
decoder_attention_mask=decoder_attention_mask, |
|
head_mask=head_mask, |
|
decoder_head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
encoder_outputs=encoder_outputs, |
|
inputs_embeds=inputs_embeds, |
|
decoder_inputs_embeds=decoder_inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = outputs[0] |
|
|
|
seq_len = input_ids.ne(self.config.pad_token_id).sum(dim=-1) - 1 |
|
|
|
sentence_representation = hidden_states[range(len(seq_len)), seq_len, :] |
|
logits = self.classification_head(sentence_representation) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.config.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.config.num_labels > 1 and ( |
|
labels.dtype == torch.long or labels.dtype == torch.int |
|
): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.config.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
logits.view(-1, self.config.num_labels), labels.view(-1) |
|
) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqSequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
sentence_representation=sentence_representation, |
|
past_key_values=outputs.past_key_values, |
|
decoder_hidden_states=outputs.decoder_hidden_states, |
|
decoder_attentions=outputs.decoder_attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state, |
|
encoder_hidden_states=outputs.encoder_hidden_states, |
|
encoder_attentions=outputs.encoder_attentions, |
|
) |
|
|