Spaces:
Runtime error
Runtime error
Upload dataset.py
Browse filesAdded dataset file
- dataset.py +302 -0
dataset.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import os
|
3 |
+
import pickle
|
4 |
+
from functools import lru_cache
|
5 |
+
import pytesseract
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import torch
|
9 |
+
from torchvision.transforms import ToTensor
|
10 |
+
|
11 |
+
PAD_TOKEN_BOX = [0, 0, 0, 0]
|
12 |
+
GRID_SIZE = 1000
|
13 |
+
|
14 |
+
|
15 |
+
def normalize_box(box, width, height, size=1000):
|
16 |
+
"""
|
17 |
+
Takes a bounding box and normalizes it to a thousand pixels. If you notice it is
|
18 |
+
just like calculating percentage except takes 1000 instead of 100.
|
19 |
+
"""
|
20 |
+
return [
|
21 |
+
int(size * (box[0] / width)),
|
22 |
+
int(size * (box[1] / height)),
|
23 |
+
int(size * (box[2] / width)),
|
24 |
+
int(size * (box[3] / height)),
|
25 |
+
]
|
26 |
+
|
27 |
+
|
28 |
+
@lru_cache(maxsize=10)
|
29 |
+
def resize_align_bbox(bbox, orig_w, orig_h, target_w, target_h):
|
30 |
+
x_scale = target_w / orig_w
|
31 |
+
y_scale = target_h / orig_h
|
32 |
+
orig_left, orig_top, orig_right, orig_bottom = bbox
|
33 |
+
x = int(np.round(orig_left * x_scale))
|
34 |
+
y = int(np.round(orig_top * y_scale))
|
35 |
+
xmax = int(np.round(orig_right * x_scale))
|
36 |
+
ymax = int(np.round(orig_bottom * y_scale))
|
37 |
+
return [x, y, xmax, ymax]
|
38 |
+
|
39 |
+
|
40 |
+
def get_topleft_bottomright_coordinates(df_row):
|
41 |
+
left, top, width, height = df_row["left"], df_row["top"], df_row["width"], df_row["height"]
|
42 |
+
return [left, top, left + width, top + height]
|
43 |
+
|
44 |
+
|
45 |
+
def apply_ocr(image_fp):
|
46 |
+
"""
|
47 |
+
Returns words and its bounding boxes from an image
|
48 |
+
"""
|
49 |
+
image = Image.open(image_fp)
|
50 |
+
width, height = image.size
|
51 |
+
|
52 |
+
ocr_df = pytesseract.image_to_data(image, output_type="data.frame")
|
53 |
+
ocr_df = ocr_df.dropna().reset_index(drop=True)
|
54 |
+
float_cols = ocr_df.select_dtypes("float").columns
|
55 |
+
ocr_df[float_cols] = ocr_df[float_cols].round(0).astype(int)
|
56 |
+
ocr_df = ocr_df.replace(r"^\s*$", np.nan, regex=True)
|
57 |
+
ocr_df = ocr_df.dropna().reset_index(drop=True)
|
58 |
+
words = list(ocr_df.text.apply(lambda x: str(x).strip()))
|
59 |
+
actual_bboxes = ocr_df.apply(get_topleft_bottomright_coordinates, axis=1).values.tolist()
|
60 |
+
|
61 |
+
# add as extra columns
|
62 |
+
assert len(words) == len(actual_bboxes)
|
63 |
+
return {"words": words, "bbox": actual_bboxes}
|
64 |
+
|
65 |
+
def get_tokens_with_boxes(unnormalized_word_boxes, pad_token_box, word_ids,max_seq_len = 512):
|
66 |
+
|
67 |
+
# assert len(unnormalized_word_boxes) == len(word_ids), this should not be applied, since word_ids may have higher
|
68 |
+
# length and the bbox corresponding to them may not exist
|
69 |
+
|
70 |
+
unnormalized_token_boxes = []
|
71 |
+
|
72 |
+
for i, word_idx in enumerate(word_ids):
|
73 |
+
if word_idx is None:
|
74 |
+
break
|
75 |
+
unnormalized_token_boxes.append(unnormalized_word_boxes[word_idx])
|
76 |
+
|
77 |
+
# all remaining are padding tokens so why add them in a loop one by one
|
78 |
+
num_pad_tokens = len(word_ids) - i - 1
|
79 |
+
if num_pad_tokens > 0:
|
80 |
+
unnormalized_token_boxes.extend([pad_token_box] * num_pad_tokens)
|
81 |
+
|
82 |
+
|
83 |
+
if len(unnormalized_token_boxes)<max_seq_len:
|
84 |
+
unnormalized_token_boxes.extend([pad_token_box] * (max_seq_len-len(unnormalized_token_boxes)))
|
85 |
+
|
86 |
+
return unnormalized_token_boxes
|
87 |
+
|
88 |
+
|
89 |
+
def get_centroid(actual_bbox):
|
90 |
+
centroid = []
|
91 |
+
for i in actual_bbox:
|
92 |
+
width = i[2] - i[0]
|
93 |
+
height = i[3] - i[1]
|
94 |
+
centroid.append([i[0] + width / 2, i[1] + height / 2])
|
95 |
+
return centroid
|
96 |
+
|
97 |
+
|
98 |
+
def get_pad_token_id_start_index(words, encoding, tokenizer):
|
99 |
+
# assert len(words) < len(encoding["input_ids"]) This condition, was creating errors on some sample images
|
100 |
+
for idx in range(len(encoding["input_ids"])):
|
101 |
+
if encoding["input_ids"][idx] == tokenizer.pad_token_id:
|
102 |
+
break
|
103 |
+
return idx
|
104 |
+
|
105 |
+
|
106 |
+
def get_relative_distance(bboxes, centroids, pad_tokens_start_idx):
|
107 |
+
|
108 |
+
a_rel_x = []
|
109 |
+
a_rel_y = []
|
110 |
+
|
111 |
+
for i in range(0, len(bboxes)-1):
|
112 |
+
if i >= pad_tokens_start_idx:
|
113 |
+
a_rel_x.append([0] * 8)
|
114 |
+
a_rel_y.append([0] * 8)
|
115 |
+
continue
|
116 |
+
|
117 |
+
curr = bboxes[i]
|
118 |
+
next = bboxes[i+1]
|
119 |
+
|
120 |
+
a_rel_x.append(
|
121 |
+
[
|
122 |
+
curr[0], # top left x
|
123 |
+
curr[2], # bottom right x
|
124 |
+
curr[2] - curr[0], # width
|
125 |
+
next[0] - curr[0], # diff top left x
|
126 |
+
next[0] - curr[0], # diff bottom left x
|
127 |
+
next[2] - curr[2], # diff top right x
|
128 |
+
next[2] - curr[2], # diff bottom right x
|
129 |
+
centroids[i+1][0] - centroids[i][0],
|
130 |
+
]
|
131 |
+
)
|
132 |
+
|
133 |
+
a_rel_y.append(
|
134 |
+
[
|
135 |
+
curr[1], # top left y
|
136 |
+
curr[3], # bottom right y
|
137 |
+
curr[3] - curr[1], # height
|
138 |
+
next[1] - curr[1], # diff top left y
|
139 |
+
next[3] - curr[3], # diff bottom left y
|
140 |
+
next[1] - curr[1], # diff top right y
|
141 |
+
next[3] - curr[3], # diff bottom right y
|
142 |
+
centroids[i+1][1] - centroids[i][1],
|
143 |
+
]
|
144 |
+
)
|
145 |
+
|
146 |
+
# For the last word
|
147 |
+
|
148 |
+
a_rel_x.append([0]*8)
|
149 |
+
a_rel_y.append([0]*8)
|
150 |
+
|
151 |
+
|
152 |
+
return a_rel_x, a_rel_y
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
def apply_mask(inputs, tokenizer):
|
157 |
+
inputs = torch.as_tensor(inputs)
|
158 |
+
rand = torch.rand(inputs.shape)
|
159 |
+
# where the random array is less than 0.15, we set true
|
160 |
+
mask_arr = (rand < 0.15) * (inputs != tokenizer.cls_token_id) * (inputs != tokenizer.pad_token_id)
|
161 |
+
# create selection from mask_arr
|
162 |
+
selection = torch.flatten(mask_arr.nonzero()).tolist()
|
163 |
+
# apply selection pad_tokens_start_idx to inputs.input_ids, adding MASK tokens
|
164 |
+
inputs[selection] = 103
|
165 |
+
return inputs
|
166 |
+
|
167 |
+
|
168 |
+
def read_image_and_extract_text(image):
|
169 |
+
original_image = Image.open(image).convert("RGB")
|
170 |
+
return apply_ocr(image)
|
171 |
+
|
172 |
+
|
173 |
+
def create_features(
|
174 |
+
image,
|
175 |
+
tokenizer,
|
176 |
+
add_batch_dim=False,
|
177 |
+
target_size=(500,384), # This was the resolution used by the authors
|
178 |
+
max_seq_length=512,
|
179 |
+
path_to_save=None,
|
180 |
+
save_to_disk=False,
|
181 |
+
apply_mask_for_mlm=False,
|
182 |
+
extras_for_debugging=False,
|
183 |
+
use_ocr = False,
|
184 |
+
bounding_box = None,
|
185 |
+
words = None
|
186 |
+
):
|
187 |
+
|
188 |
+
# step 1: read original image and extract OCR entries
|
189 |
+
original_image = Image.open(image).convert("RGB")
|
190 |
+
|
191 |
+
if (use_ocr == False) and (bounding_box == None or words == None):
|
192 |
+
raise Exception('Please provide the bounding box and words or pass the argument "use_ocr" = True')
|
193 |
+
|
194 |
+
if use_ocr == True:
|
195 |
+
entries = apply_ocr(image)
|
196 |
+
bounding_box = entries["bbox"]
|
197 |
+
words = entries["words"]
|
198 |
+
|
199 |
+
CLS_TOKEN_BOX = [0, 0, *original_image.size] # Can be variable, but as per the paper, they have mentioned that it covers the whole image
|
200 |
+
# step 2: resize image
|
201 |
+
resized_image = original_image.resize(target_size)
|
202 |
+
|
203 |
+
# step 3: normalize image to a grid of 1000 x 1000 (to avoid the problem of differently sized images)
|
204 |
+
width, height = original_image.size
|
205 |
+
normalized_word_boxes = [
|
206 |
+
normalize_box(bbox, width, height, GRID_SIZE) for bbox in bounding_box
|
207 |
+
]
|
208 |
+
assert len(words) == len(normalized_word_boxes), "Length of words != Length of normalized words"
|
209 |
+
|
210 |
+
# step 4: tokenize words and get their bounding boxes (one word may split into multiple tokens)
|
211 |
+
encoding = tokenizer(words,
|
212 |
+
padding="max_length",
|
213 |
+
max_length=max_seq_length,
|
214 |
+
is_split_into_words=True,
|
215 |
+
truncation=True,
|
216 |
+
add_special_tokens=False)
|
217 |
+
|
218 |
+
unnormalized_token_boxes = get_tokens_with_boxes(bounding_box,
|
219 |
+
PAD_TOKEN_BOX,
|
220 |
+
encoding.word_ids())
|
221 |
+
|
222 |
+
# step 5: add special tokens and truncate seq. to maximum length
|
223 |
+
unnormalized_token_boxes = [CLS_TOKEN_BOX] + unnormalized_token_boxes[:-1]
|
224 |
+
# add CLS token manually to avoid autom. addition of SEP too (as in the paper)
|
225 |
+
encoding["input_ids"] = [tokenizer.cls_token_id] + encoding["input_ids"][:-1]
|
226 |
+
|
227 |
+
# step 6: Add bounding boxes to the encoding dict
|
228 |
+
encoding["unnormalized_token_boxes"] = unnormalized_token_boxes
|
229 |
+
|
230 |
+
# step 7: apply mask for the sake of pre-training
|
231 |
+
if apply_mask_for_mlm:
|
232 |
+
encoding["mlm_labels"] = encoding["input_ids"]
|
233 |
+
encoding["input_ids"] = apply_mask(encoding["input_ids"], tokenizer)
|
234 |
+
assert len(encoding["mlm_labels"]) == max_seq_length, "Length of mlm_labels != Length of max_seq_length"
|
235 |
+
|
236 |
+
assert len(encoding["input_ids"]) == max_seq_length, "Length of input_ids != Length of max_seq_length"
|
237 |
+
assert len(encoding["attention_mask"]) == max_seq_length, "Length of attention mask != Length of max_seq_length"
|
238 |
+
assert len(encoding["token_type_ids"]) == max_seq_length, "Length of token type ids != Length of max_seq_length"
|
239 |
+
|
240 |
+
# step 8: normalize the image
|
241 |
+
encoding["resized_scaled_img"] = ToTensor()(resized_image)
|
242 |
+
|
243 |
+
# step 9: apply mask for the sake of pre-training
|
244 |
+
if apply_mask_for_mlm:
|
245 |
+
encoding["mlm_labels"] = encoding["input_ids"]
|
246 |
+
encoding["input_ids"] = apply_mask(encoding["input_ids"], tokenizer)
|
247 |
+
|
248 |
+
# step 10: rescale and align the bounding boxes to match the resized image size (typically 224x224)
|
249 |
+
resized_and_aligned_bboxes = []
|
250 |
+
|
251 |
+
for bbox in unnormalized_token_boxes:
|
252 |
+
# performing the normalization of the bounding box
|
253 |
+
resized_and_aligned_bboxes.append(resize_align_bbox(tuple(bbox), *original_image.size, *target_size))
|
254 |
+
|
255 |
+
encoding["resized_and_aligned_bounding_boxes"] = resized_and_aligned_bboxes
|
256 |
+
|
257 |
+
# step 11: add the relative distances in the normalized grid
|
258 |
+
bboxes_centroids = get_centroid(resized_and_aligned_bboxes)
|
259 |
+
pad_token_start_index = get_pad_token_id_start_index(words, encoding, tokenizer)
|
260 |
+
a_rel_x, a_rel_y = get_relative_distance(resized_and_aligned_bboxes, bboxes_centroids, pad_token_start_index)
|
261 |
+
|
262 |
+
# step 12: convert all to tensors
|
263 |
+
for k, v in encoding.items():
|
264 |
+
encoding[k] = torch.as_tensor(encoding[k])
|
265 |
+
|
266 |
+
encoding.update({
|
267 |
+
"x_features": torch.as_tensor(a_rel_x, dtype=torch.int32),
|
268 |
+
"y_features": torch.as_tensor(a_rel_y, dtype=torch.int32),
|
269 |
+
})
|
270 |
+
|
271 |
+
# step 13: add tokens for debugging
|
272 |
+
if extras_for_debugging:
|
273 |
+
input_ids = encoding["mlm_labels"] if apply_mask_for_mlm else encoding["input_ids"]
|
274 |
+
encoding["tokens_without_padding"] = tokenizer.convert_ids_to_tokens(input_ids)
|
275 |
+
encoding["words"] = words
|
276 |
+
|
277 |
+
|
278 |
+
# step 14: add extra dim for batch
|
279 |
+
if add_batch_dim:
|
280 |
+
encoding["x_features"].unsqueeze_(0)
|
281 |
+
encoding["y_features"].unsqueeze_(0)
|
282 |
+
encoding["input_ids"].unsqueeze_(0)
|
283 |
+
encoding["resized_scaled_img"].unsqueeze_(0)
|
284 |
+
|
285 |
+
# step 15: save to disk
|
286 |
+
if save_to_disk:
|
287 |
+
os.makedirs(path_to_save, exist_ok=True)
|
288 |
+
image_name = os.path.basename(image)
|
289 |
+
with open(f"{path_to_save}{image_name}.pickle", "wb") as f:
|
290 |
+
pickle.dump(encoding, f)
|
291 |
+
|
292 |
+
# step 16: keys to keep, resized_and_aligned_bounding_boxes have been added for the purpose to test if the bounding boxes are drawn correctly or not, it maybe removed
|
293 |
+
|
294 |
+
keys = ['resized_scaled_img', 'x_features','y_features','input_ids','resized_and_aligned_bounding_boxes']
|
295 |
+
|
296 |
+
if apply_mask_for_mlm:
|
297 |
+
keys.append('mlm_labels')
|
298 |
+
|
299 |
+
final_encoding = {k:encoding[k] for k in keys}
|
300 |
+
|
301 |
+
del encoding
|
302 |
+
return final_encoding
|