import datetime import gradio as gr from langdetect import detect, DetectorFactory, detect_langs from transformers import pipeline models = {'en': 'Narsil/deberta-large-mnli-zero-cls', # English 'de': 'Sahajtomar/German_Zeroshot', # German 'es': 'Recognai/zeroshot_selectra_medium', # Spanish 'it': 'joeddav/xlm-roberta-large-xnli', # Italian 'ru': 'DeepPavlov/xlm-roberta-large-en-ru-mnli', # Russian 'no': 'NbAiLab/nb-bert-base-mnli'} # Norsk hypothesis_templates = {'en': 'This example is {}.', # English 'de': 'Dieses beispiel ist {}.', # German 'es': 'Este ejemplo es {}.', # Spanish 'it': 'Questo esempio è {}.', # Italian 'ru': 'Этот пример {}.', # Russian 'no': 'Dette eksempelet er {}.'} # Norsk def detect_lang(sequence, labels): DetectorFactory.seed = 0 seq_lang = 'en' try: seq_lang = detect(sequence) lbl_lang = detect(labels) except: print("Language detection failed!", "Date:{}, Sequence:{}, Labels:{}".format( str(datetime.datetime.now()), labels)) if seq_lang != lbl_lang: print("Different languages detected for sequence and labels!", "Date:{}, Sequence:{}, Labels:{}, Sequence Language:{}, Label Language:{}".format( str(datetime.datetime.now()), sequence, labels, seq_lang, lbl_lang)) if seq_lang in models: print("Sequence Language detected.", "Date:{}, Sequence:{}, Sequence Language:{}".format( str(datetime.datetime.now()), sequence, seq_lang)) else: print("Language not supported. Defaulting to English!", "Date:{}, Sequence:{}, Sequence Language:{}".format( str(datetime.datetime.now()), sequence, seq_lang)) seq_lang = 'en' return seq_lang def sequence_to_classify(sequence, labels): label_clean = str(labels).split(",") lang = detect_lang(sequence, labels) classifier = pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates[lang], model=models[lang]) response = classifier(sequence, label_clean, multi_label=True) predicted_labels = response['labels'] predicted_scores = response['scores'] clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels} print("Date:{}, Sequence:{}, Labels: {}".format( str(datetime.datetime.now()), sequence, predicted_labels)) return clean_output example_text1 = "Climate change refers to long-term shifts in temperatures and weather patterns. \ These shifts may be natural, but since the 1800s, human activities have been the main driver of climate change, \ primarily due to the burning of fossil fuels (like coal, oil, and gas), which produces heat-trapping gases." example_labels1="business,nature,religion" example_text2="Ja, vi elsker dette landet,\ som det stiger frem,\ furet, værbitt over vannet,\ med de tusen hjem.\ Og som fedres kamp har hevet\ det av nød til seir"\ example_labels2="helse,sport,religion,mat,patriotisme og nasjonalisme" iface = gr.Interface( title="Multilingual Multi-label Zero-shot Classification", description="Currently supported languages are English, German, Spanish, Italian, Russian, Norsk.", fn=sequence_to_classify, inputs=[gr.inputs.Textbox(lines=20, label="Please enter the text you would like to classify...", placeholder="Text here..."), gr.inputs.Textbox(lines=5, label="Possible candidate labels (separated by comma)...", placeholder="Labels here separated by comma...")], outputs=gr.outputs.Label(num_top_classes=5), capture_session=True, #interpretation="default", examples=[ [example_text1, example_labels1], [example_text2, example_labels2] ]) iface.launch()