File size: 5,672 Bytes
e540a80
 
 
 
 
 
 
 
368eab3
e540a80
 
 
 
 
 
 
 
 
 
 
 
 
368eab3
 
1c348f1
 
368eab3
 
 
1c348f1
 
368eab3
 
 
e540a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1c2ab5
 
e540a80
 
a1c2ab5
368eab3
 
a1c2ab5
e540a80
 
368eab3
e540a80
 
 
 
368eab3
e540a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368eab3
e540a80
 
 
 
 
 
 
 
 
 
 
1c348f1
e540a80
efcdb4f
e540a80
 
 
 
 
 
 
 
 
 
 
 
 
 
007aa6e
 
e540a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection
from keras_cv_attention_models.yolox import *

import os

# colors for visualization
COLORS = [
    [0.000, 0.447, 0.741],
    [0.850, 0.325, 0.098],
    [0.929, 0.694, 0.125],
    [0.494, 0.184, 0.556],
    [0.466, 0.674, 0.188],
    [0.301, 0.745, 0.933]
]

def make_prediction(img, feature_extractor, model, model_name):
    if 'yolox' in model_name:
        inputs = feature_extractor(img)
        outputs = model(**inputs)
        processed_outputs = {}
        processed_outputs['boxes'], processed_outputs['labels'], processed_outputs['scores'] = model.decode_predictions(outputs)[0]
    else:
        inputs = feature_extractor(img, return_tensors="pt")
        outputs = model(**inputs)
        img_size = torch.tensor([tuple(reversed(img.size))])
        processed_outputs = feature_extractor.post_process(outputs, img_size)[0]
    return processed_outputs

def fig2img(fig):
    buf = io.BytesIO()
    fig.savefig(buf)
    buf.seek(0)
    img = Image.open(buf)
    return img


def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
    keep = output_dict["scores"] > threshold
    boxes = output_dict["boxes"][keep].tolist()
    scores = output_dict["scores"][keep].tolist()
    labels = output_dict["labels"][keep].tolist()
    if id2label is not None:
        labels = [id2label[x] for x in labels]

    plt.figure(figsize=(16, 10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
        ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
    plt.axis("off")
    return fig2img(plt.gcf())

def detect_objects(model_name,url_input,image_input,threshold):
    if 'detr' in model_name:
        model = DetrForObjectDetection.from_pretrained(model_name)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
    elif 'yolos' in model_name:
        model = YolosForObjectDetection.from_pretrained(model_name)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
    elif 'yolox' in model_name:
        model = YOLOXL(pretrained="coco")
        feature_extractor = model.preprocess_input
    
    if validators.url(url_input):
        image = Image.open(requests.get(url_input, stream=True).raw)     
    elif image_input:
        image = image_input
    
    #Make prediction
    processed_outputs = make_prediction(image, feature_extractor, model, model_name)
    
    #Visualize prediction
    viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
    
    return viz_img   
        
def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])

def set_example_url(example: list) -> dict:
    return gr.Textbox.update(value=example[0])


title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""

description = """
Links to HuggingFace Models:

- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)  
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)  
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
- [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)

"""

models = ["facebook/detr-resnet-50","facebook/detr-resnet-101","hustvl/yolos-small","hustvl/yolos-tiny","yoloxl"]
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]

css = '''
h1#title {
  text-align: center;
}
'''
demo = gr.Blocks(css=css)

with demo:
    gr.Markdown(title)
    #gr.Markdown(description)
    options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
    slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.5,label='Prediction Threshold')
    
    with gr.Tabs():
        with gr.TabItem('Image URL'):
            with gr.Row():
                url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
                img_output_from_url = gr.Image(shape=(650,650))
                
            with gr.Row():
                example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
            
            url_but = gr.Button('Detect')
     
        with gr.TabItem('Image Upload'):
            with gr.Row():
                img_input = gr.Image()
                #img_input = gr.Image(type='pil')
                img_output_from_upload= gr.Image(shape=(650,650))
                
            with gr.Row(): 
                example_images = gr.Dataset(components=[img_input],
                                            samples=[[path.as_posix()]
                                                     for path in sorted(pathlib.Path('images').rglob('*.JPG'))])
                
            img_but = gr.Button('Detect')
        
    
    url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
    img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
    example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
    example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
    
demo.launch(enable_queue=True)