Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
from lavis.models import load_model_and_preprocess | |
from lavis.processors import load_processor | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load model and preprocessors for Image-Text Matching (LAVIS) | |
device = torch.device("cuda") if torch.cuda.is_available() else "cpu" | |
model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True) | |
# Load tokenizer and model for Image Captioning (TextCaps) | |
tokenizer_caption = AutoTokenizer.from_pretrained("microsoft/git-large-r-textcaps") | |
model_caption = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps").to(device) | |
# List of statements for Image-Text Matching | |
statements = [ | |
"cartoon, figurine, or toy", | |
"appears to be for children", | |
"includes children", | |
"is sexual", | |
"depicts a child or portrays objects, images, or cartoon figures that primarily appeal to persons below the legal purchase age", | |
"uses the name of or depicts Santa Claus", | |
'promotes alcohol use as a "rite of passage" to adulthood', | |
] | |
# Function to generate image captions using TextCaps | |
def generate_image_captions(image): | |
inputs = tokenizer_caption(image, return_tensors="pt", padding=True, truncation=True).to(device) | |
outputs = model_caption.generate(**inputs) | |
caption = tokenizer_caption.decode(outputs[0], skip_special_tokens=True) | |
return caption | |
# Main function to perform image captioning and image-text matching | |
def process_images_and_statements(image): | |
pil_image = Image.fromarray(image.astype('uint8'), 'RGB') | |
img = vis_processors["eval"](pil_image.convert("RGB")).unsqueeze(0).to(device) | |
# Generate image captions using TextCaps | |
captions = generate_image_captions(pil_image) | |
# Convert caption to the format expected by the ITM model | |
txt = text_processors["eval"](captions) | |
# Compute ITM scores for predefined statements | |
itm_output = model_itm({"image": img, "text_input": txt}, match_head="itm") | |
itm_scores = torch.nn.functional.softmax(itm_output, dim=1) | |
score = itm_scores[:, 1].item() | |
results = [f'Image Caption: "{captions}" with a matching probability of {score:.3%}'] | |
for statement in statements: | |
txt = text_processors["eval"](statement) | |
itm_output = model_itm({"image": img, "text_input": txt}, match_head="itm") | |
itm_scores = torch.nn.functional.softmax(itm_output, dim=1) | |
score = itm_scores[:, 1].item() | |
result_text = f'The combination of image, caption ("{captions}"), and statement ("{statement}") is matched with a probability of {score:.3%}' | |
results.append(result_text) | |
output = "\n".join(results) | |
return output | |
# Gradio interface | |
image_input = gr.inputs.Image() | |
output = gr.outputs.Textbox(label="Results") | |
iface = gr.Interface(fn=process_images_and_statements, inputs=image_input, outputs=output, title="Image Captioning and Image-Text Matching") | |
iface.launch() | |