caption-match / app.py
iamrobotbear's picture
Update app.py
c68c7bb
import gradio as gr
import torch
from PIL import Image
import pandas as pd
from lavis.models import load_model_and_preprocess
from lavis.processors import load_processor
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model and preprocessors for Image-Text Matching (LAVIS)
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True)
# Load tokenizer and model for Image Captioning (TextCaps)
tokenizer_caption = AutoTokenizer.from_pretrained("microsoft/git-large-r-textcaps")
model_caption = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
# List of statements for Image-Text Matching
statements = [
"cartoon, figurine, or toy",
"appears to be for children",
"includes children",
"is sexual",
"depicts a child or portrays objects, images, or cartoon figures that primarily appeal to persons below the legal purchase age",
"uses the name of or depicts Santa Claus",
'promotes alcohol use as a "rite of passage" to adulthood',
]
txts = [text_processors["eval"](statement) for statement in statements]
# Function to compute Image-Text Matching (ITM) scores for all statements
def compute_itm_scores(image):
pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
img = vis_processors["eval"](pil_image.convert("RGB")).unsqueeze(0).to(device)
results = []
for i, statement in enumerate(statements):
txt = txts[i]
itm_output = model_itm({"image": img, "text_input": txt}, match_head="itm")
itm_scores = torch.nn.functional.softmax(itm_output, dim=1)
score = itm_scores[:, 1].item()
result_text = f'The image and "{statement}" are matched with a probability of {score:.3%}'
results.append(result_text)
output = "\n".join(results)
return output
# Function to generate image captions using TextCaps
def generate_image_captions():
prompt = "A photo of"
inputs = tokenizer_caption(prompt, return_tensors="pt", padding=True, truncation=True)
outputs = model_caption.generate(**inputs)
caption = tokenizer_caption.decode(outputs[0], skip_special_tokens=True)
return prompt + " " + caption
# Main function to perform image captioning and image-text matching
def process_images_and_statements(image):
# Generate image captions using TextCaps
captions = generate_image_captions()
# Compute ITM scores for predefined statements using LAVIS
itm_scores = compute_itm_scores(image)
# Combine image captions and ITM scores into the output
output = "Image Captions:\n" + captions + "\n\nITM Scores:\n" + itm_scores
return output
# Gradio interface
image_input = gr.inputs.Image()
output = gr.outputs.Textbox(label="Results")
iface = gr.Interface(fn=process_images_and_statements, inputs=image_input, outputs=output, title="Image Captioning and Image-Text Matching")
iface.launch()