Spaces:
Runtime error
Runtime error
Commit
·
afa4c81
1
Parent(s):
e1bf7e0
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from pathlib import Path
|
4 |
from PIL import Image
|
5 |
import pandas as pd
|
6 |
from lavis.models import load_model_and_preprocess
|
7 |
from lavis.processors import load_processor
|
8 |
-
from transformers import
|
9 |
|
10 |
# Load model and preprocessors for Image-Text Matching (LAVIS)
|
11 |
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
|
12 |
model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True)
|
13 |
|
14 |
-
# Load model and
|
15 |
-
model_caption =
|
16 |
-
|
17 |
|
18 |
# List of statements for Image-Text Matching
|
19 |
statements = [
|
@@ -46,9 +45,9 @@ def compute_itm_scores(image):
|
|
46 |
# Function to generate image captions using TextCaps
|
47 |
def generate_image_captions(image):
|
48 |
pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
|
49 |
-
inputs =
|
50 |
outputs = model_caption.generate(**inputs)
|
51 |
-
caption =
|
52 |
return caption
|
53 |
|
54 |
# Main function to perform image captioning and image-text matching
|
@@ -63,8 +62,9 @@ def process_images_and_statements(image):
|
|
63 |
output = "Image Captions:\n" + captions + "\n\nITM Scores:\n" + itm_scores
|
64 |
return output
|
65 |
|
|
|
66 |
image_input = gr.inputs.Image()
|
67 |
output = gr.outputs.Textbox(label="Results")
|
68 |
|
69 |
iface = gr.Interface(fn=process_images_and_statements, inputs=image_input, outputs=output, title="Image Captioning and Image-Text Matching")
|
70 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from PIL import Image
|
4 |
import pandas as pd
|
5 |
from lavis.models import load_model_and_preprocess
|
6 |
from lavis.processors import load_processor
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Import AutoTokenizer and AutoModelForSeq2SeqLM
|
8 |
|
9 |
# Load model and preprocessors for Image-Text Matching (LAVIS)
|
10 |
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
|
11 |
model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True)
|
12 |
|
13 |
+
# Load model and tokenizer for Image Captioning (TextCaps)
|
14 |
+
model_caption = AutoModelForSeq2SeqLM.from_pretrained("microsoft/git-large-r-textcaps")
|
15 |
+
tokenizer_caption = AutoTokenizer.from_pretrained("microsoft/git-large-r-textcaps")
|
16 |
|
17 |
# List of statements for Image-Text Matching
|
18 |
statements = [
|
|
|
45 |
# Function to generate image captions using TextCaps
|
46 |
def generate_image_captions(image):
|
47 |
pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
|
48 |
+
inputs = tokenizer_caption(pil_image, return_tensors="pt", padding=True, truncation=True)
|
49 |
outputs = model_caption.generate(**inputs)
|
50 |
+
caption = tokenizer_caption.decode(outputs[0])
|
51 |
return caption
|
52 |
|
53 |
# Main function to perform image captioning and image-text matching
|
|
|
62 |
output = "Image Captions:\n" + captions + "\n\nITM Scores:\n" + itm_scores
|
63 |
return output
|
64 |
|
65 |
+
# Gradio interface
|
66 |
image_input = gr.inputs.Image()
|
67 |
output = gr.outputs.Textbox(label="Results")
|
68 |
|
69 |
iface = gr.Interface(fn=process_images_and_statements, inputs=image_input, outputs=output, title="Image Captioning and Image-Text Matching")
|
70 |
+
iface.launch()
|