import gradio as gr import torch from PIL import Image from lavis.models import load_model_and_preprocess from lavis.processors import load_processor from transformers import AutoTokenizer, AutoModelForCausalLM # Load model and preprocessors for Image-Text Matching (LAVIS) device = torch.device("cuda") if torch.cuda.is_available() else "cpu" model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True) # Load tokenizer and model for Image Captioning (TextCaps) tokenizer_caption = AutoTokenizer.from_pretrained("microsoft/git-large-r-textcaps") model_caption = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps").to(device) # List of statements for Image-Text Matching statements = [ "cartoon, figurine, or toy", "appears to be for children", "includes children", "is sexual", "depicts a child or portrays objects, images, or cartoon figures that primarily appeal to persons below the legal purchase age", "uses the name of or depicts Santa Claus", 'promotes alcohol use as a "rite of passage" to adulthood', ] # Function to generate image captions using TextCaps def generate_image_captions(image): inputs = tokenizer_caption(image, return_tensors="pt", padding=True, truncation=True).to(device) outputs = model_caption.generate(**inputs) caption = tokenizer_caption.decode(outputs[0], skip_special_tokens=True) return caption # Main function to perform image captioning and image-text matching def process_images_and_statements(image): pil_image = Image.fromarray(image.astype('uint8'), 'RGB') img = vis_processors["eval"](pil_image.convert("RGB")).unsqueeze(0).to(device) # Generate image captions using TextCaps captions = generate_image_captions(pil_image) # Convert caption to the format expected by the ITM model txt = text_processors["eval"](captions) # Compute ITM scores for predefined statements itm_output = model_itm({"image": img, "text_input": txt}, match_head="itm") itm_scores = torch.nn.functional.softmax(itm_output, dim=1) score = itm_scores[:, 1].item() results = [f'Image Caption: "{captions}" with a matching probability of {score:.3%}'] for statement in statements: txt = text_processors["eval"](statement) itm_output = model_itm({"image": img, "text_input": txt}, match_head="itm") itm_scores = torch.nn.functional.softmax(itm_output, dim=1) score = itm_scores[:, 1].item() result_text = f'The combination of image, caption ("{captions}"), and statement ("{statement}") is matched with a probability of {score:.3%}' results.append(result_text) output = "\n".join(results) return output # Gradio interface image_input = gr.inputs.Image() output = gr.outputs.Textbox(label="Results") iface = gr.Interface(fn=process_images_and_statements, inputs=image_input, outputs=output, title="Image Captioning and Image-Text Matching") iface.launch()