import gradio as gr import torch from PIL import Image import pandas as pd from lavis.models import load_model_and_preprocess from lavis.processors import load_processor from transformers import AutoTokenizer, AutoModelForCausalLM # Load model and preprocessors for Image-Text Matching (LAVIS) device = torch.device("cuda") if torch.cuda.is_available() else "cpu" model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True) # Load tokenizer and model for Image Captioning (TextCaps) tokenizer_caption = AutoTokenizer.from_pretrained("microsoft/git-large-r-textcaps") model_caption = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps") # List of statements for Image-Text Matching statements = [ "cartoon, figurine, or toy", "appears to be for children", "includes children", "is sexual", "depicts a child or portrays objects, images, or cartoon figures that primarily appeal to persons below the legal purchase age", "uses the name of or depicts Santa Claus", 'promotes alcohol use as a "rite of passage" to adulthood', ] txts = [text_processors["eval"](statement) for statement in statements] # Function to compute Image-Text Matching (ITM) scores for all statements def compute_itm_scores(image): pil_image = Image.fromarray(image.astype('uint8'), 'RGB') img = vis_processors["eval"](pil_image.convert("RGB")).unsqueeze(0).to(device) results = [] for i, statement in enumerate(statements): txt = txts[i] itm_output = model_itm({"image": img, "text_input": txt}, match_head="itm") itm_scores = torch.nn.functional.softmax(itm_output, dim=1) score = itm_scores[:, 1].item() result_text = f'The image and "{statement}" are matched with a probability of {score:.3%}' results.append(result_text) output = "\n".join(results) return output # Function to generate image captions using TextCaps def generate_image_captions(): prompt = "A photo of" inputs = tokenizer_caption(prompt, return_tensors="pt", padding=True, truncation=True) outputs = model_caption.generate(**inputs) caption = tokenizer_caption.decode(outputs[0], skip_special_tokens=True) return prompt + " " + caption # Main function to perform image captioning and image-text matching def process_images_and_statements(image): # Generate image captions using TextCaps captions = generate_image_captions() # Compute ITM scores for predefined statements using LAVIS itm_scores = compute_itm_scores(image) # Combine image captions and ITM scores into the output output = "Image Captions:\n" + captions + "\n\nITM Scores:\n" + itm_scores return output # Gradio interface image_input = gr.inputs.Image() output = gr.outputs.Textbox(label="Results") iface = gr.Interface(fn=process_images_and_statements, inputs=image_input, outputs=output, title="Image Captioning and Image-Text Matching") iface.launch()