Spaces:
Build error
Build error
import gradio as gr | |
import torch | |
from PIL import Image | |
import pandas as pd | |
from lavis.models import load_model_and_preprocess | |
from lavis.processors import load_processor | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import io | |
import os | |
import numpy as np | |
from sklearn.metrics.pairwise import cosine_similarity | |
import tempfile | |
import shutil | |
import logging | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Load model and preprocessors for Image-Text Matching (LAVIS) | |
device = torch.device("cuda") if torch.cuda.is_available() else "cpu" | |
model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True) | |
# Load tokenizer and model for Image Captioning (TextCaps) | |
git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps") | |
git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps") | |
# Load Universal Sentence Encoder model for textual similarity calculation | |
embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4") | |
# Define a function to compute textual similarity between caption and statement | |
def compute_textual_similarity(caption, statement): | |
# Convert caption and statement into sentence embeddings | |
caption_embedding = embed([caption])[0].numpy() | |
statement_embedding = embed([statement])[0].numpy() | |
# Calculate cosine similarity between sentence embeddings | |
similarity_score = cosine_similarity([caption_embedding], [statement_embedding])[0][0] | |
return similarity_score | |
# Read statements from the external file 'statements.txt' | |
with open('statements.txt', 'r') as file: | |
statements = file.read().splitlines() | |
# Function to compute ITM scores for the image-statement pair | |
def compute_itm_score(image, statement): | |
logging.info('Starting compute_itm_score') | |
pil_image = Image.fromarray(image.astype('uint8'), 'RGB') | |
img = vis_processors["eval"](pil_image.convert("RGB")).unsqueeze(0).to(device) | |
# Pass the statement text directly to model_itm | |
itm_output = model_itm({"image": img, "text_input": statement}, match_head="itm") | |
itm_scores = torch.nn.functional.softmax(itm_output, dim=1) | |
score = itm_scores[:, 1].item() | |
logging.info('Finished compute_itm_score') | |
return score | |
def generate_caption(processor, model, image): | |
logging.info('Starting generate_caption') | |
inputs = processor(images=image, return_tensors="pt").to(device) | |
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50) | |
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
logging.info('Finished generate_caption') | |
return generated_caption | |
def save_dataframe_to_csv(df): | |
csv_buffer = io.StringIO() | |
df.to_csv(csv_buffer, index=False) | |
csv_string = csv_buffer.getvalue() | |
# Save the CSV string to a temporary file | |
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".csv") as temp_file: | |
temp_file.write(csv_string) | |
temp_file_path = temp_file.name # Get the file path | |
# Return the file path (no need to reopen the file with "rb" mode) | |
return temp_file_path | |
def process_images_and_statements(image_file): | |
with tempfile.NamedTemporaryFile(delete=False) as temp_file: | |
shutil.copyfileobj(image_file, temp_file) | |
image = Image.open(temp_file.name) | |
image = np.array(image) | |
logging.info('Starting process_images_and_statements') | |
# Generate the image caption | |
generated_caption = caption_image(image) | |
# Match the statements | |
matched_statements = match_statements(image, statements) | |
os.unlink(temp_file.name) # Remove the temporary file | |
return generated_caption, matched_statements | |
# Define Gradio interface | |
image_input = gr.inputs.Image(type="numpy", label="Upload Image") | |
outputs = [ | |
gr.outputs.Image(type="pil", label="Annotated Image"), | |
gr.outputs.Textbox(label="Matched Statements"), | |
] | |
iface = gr.Interface( | |
fn=process_images_and_statements, | |
inputs=image_input, | |
outputs=outputs, | |
title="Image Captioning and Matching", | |
description="Upload an image to generate a caption for the image and match the statements.", | |
theme='sudeepshouche/minimalist' | |
) | |
# Launch Gradio app | |
iface.launch(debug=True) | |
# Launch Gradio app | |
iface.launch(debug=True) | |