Spaces:
Sleeping
Sleeping
Update query.py
Browse files
query.py
CHANGED
@@ -6,7 +6,7 @@ from urllib.parse import quote
|
|
6 |
def extract_between_tags(text, start_tag, end_tag):
|
7 |
start_index = text.find(start_tag)
|
8 |
end_index = text.find(end_tag, start_index)
|
9 |
-
return text[start_index+len(start_tag):end_index
|
10 |
|
11 |
class VectaraQuery():
|
12 |
def __init__(self, api_key: str, customer_id: str, corpus_id: str, prompt_name: str = None):
|
@@ -16,7 +16,7 @@ class VectaraQuery():
|
|
16 |
self.prompt_name = prompt_name if prompt_name else "vectara-experimental-summary-ext-2023-12-11-large"
|
17 |
self.conv_id = None
|
18 |
|
19 |
-
def get_body(self, user_response: str
|
20 |
corpora_key_list = [{
|
21 |
'customer_id': self.customer_id, 'corpus_id': self.corpus_id, 'lexical_interpolation_config': {'lambda': 0.025}
|
22 |
}]
|
@@ -26,29 +26,11 @@ class VectaraQuery():
|
|
26 |
[
|
27 |
{{
|
28 |
"role": "system",
|
29 |
-
"content": "You are a
|
30 |
-
You specialize in the {style} debate style.
|
31 |
-
You are provided with search results related to {topic}.
|
32 |
-
Follow these INSTRUCTIONS carefully:
|
33 |
-
1. Provide a thoughtful and convincing reply.
|
34 |
-
2. Do not base your response on information or knowledge that is not in the search results.
|
35 |
-
3. Respond with respect to your opponent.
|
36 |
-
4. Limit your responses to not more than 2 paragraphs."
|
37 |
-
}},
|
38 |
-
{{
|
39 |
-
"role": "assistant",
|
40 |
-
"content": "
|
41 |
-
#foreach ($qResult in $vectaraQueryResults)
|
42 |
-
Search result $esc.java(${{foreach.index}}+1): $esc.java(${{qResult.getText()}})
|
43 |
-
#end
|
44 |
-
"
|
45 |
}},
|
46 |
{{
|
47 |
"role": "user",
|
48 |
-
"content": "
|
49 |
-
Consider the search results as relevant information with which to form your response, but do not mention the results in your response.
|
50 |
-
Consider the last argument from your opponent: '{user_response}'.
|
51 |
-
Use the {style} debate style to make your argument."
|
52 |
}}
|
53 |
]
|
54 |
'''
|
@@ -56,35 +38,16 @@ class VectaraQuery():
|
|
56 |
return {
|
57 |
'query': [
|
58 |
{
|
59 |
-
'query':
|
60 |
'start': 0,
|
61 |
-
'numResults':
|
62 |
'corpusKey': corpora_key_list,
|
63 |
'context_config': {
|
64 |
'sentences_before': 2,
|
65 |
'sentences_after': 2,
|
66 |
'start_tag': "%START_SNIPPET%",
|
67 |
'end_tag': "%END_SNIPPET%",
|
68 |
-
}
|
69 |
-
'rerankingConfig':
|
70 |
-
{
|
71 |
-
'rerankerId': 272725718,
|
72 |
-
'mmrConfig': {
|
73 |
-
'diversityBias': 0.3
|
74 |
-
}
|
75 |
-
},
|
76 |
-
'summary': [
|
77 |
-
{
|
78 |
-
'responseLang': 'eng',
|
79 |
-
'maxSummarizedResults': 7,
|
80 |
-
'summarizerPromptName': self.prompt_name,
|
81 |
-
'promptText': prompt,
|
82 |
-
'chat': {
|
83 |
-
'store': True,
|
84 |
-
'conversationId': self.conv_id
|
85 |
-
},
|
86 |
-
}
|
87 |
-
]
|
88 |
}
|
89 |
]
|
90 |
}
|
@@ -98,11 +61,10 @@ class VectaraQuery():
|
|
98 |
"grpc-timeout": "60S"
|
99 |
}
|
100 |
|
101 |
-
def submit_query(self, query_str: str
|
102 |
|
103 |
endpoint = f"https://api.vectara.io/v1/stream-query"
|
104 |
-
body = self.get_body(query_str
|
105 |
-
|
106 |
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers(), stream=True)
|
107 |
if response.status_code != 200:
|
108 |
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
|
@@ -153,4 +115,4 @@ class VectaraQuery():
|
|
153 |
chunks.append(accumulated_text)
|
154 |
yield accumulated_text
|
155 |
|
156 |
-
return ''.join(chunks)
|
|
|
6 |
def extract_between_tags(text, start_tag, end_tag):
|
7 |
start_index = text.find(start_tag)
|
8 |
end_index = text.find(end_tag, start_index)
|
9 |
+
return text[start_index+len(start_tag):end_index]
|
10 |
|
11 |
class VectaraQuery():
|
12 |
def __init__(self, api_key: str, customer_id: str, corpus_id: str, prompt_name: str = None):
|
|
|
16 |
self.prompt_name = prompt_name if prompt_name else "vectara-experimental-summary-ext-2023-12-11-large"
|
17 |
self.conv_id = None
|
18 |
|
19 |
+
def get_body(self, user_response: str):
|
20 |
corpora_key_list = [{
|
21 |
'customer_id': self.customer_id, 'corpus_id': self.corpus_id, 'lexical_interpolation_config': {'lambda': 0.025}
|
22 |
}]
|
|
|
26 |
[
|
27 |
{{
|
28 |
"role": "system",
|
29 |
+
"content": "You are an assistant that provides information about drink names based on a given corpus."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
}},
|
31 |
{{
|
32 |
"role": "user",
|
33 |
+
"content": "{user_response}"
|
|
|
|
|
|
|
34 |
}}
|
35 |
]
|
36 |
'''
|
|
|
38 |
return {
|
39 |
'query': [
|
40 |
{
|
41 |
+
'query': user_response,
|
42 |
'start': 0,
|
43 |
+
'numResults': 10,
|
44 |
'corpusKey': corpora_key_list,
|
45 |
'context_config': {
|
46 |
'sentences_before': 2,
|
47 |
'sentences_after': 2,
|
48 |
'start_tag': "%START_SNIPPET%",
|
49 |
'end_tag': "%END_SNIPPET%",
|
50 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
}
|
52 |
]
|
53 |
}
|
|
|
61 |
"grpc-timeout": "60S"
|
62 |
}
|
63 |
|
64 |
+
def submit_query(self, query_str: str):
|
65 |
|
66 |
endpoint = f"https://api.vectara.io/v1/stream-query"
|
67 |
+
body = self.get_body(query_str)
|
|
|
68 |
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers(), stream=True)
|
69 |
if response.status_code != 200:
|
70 |
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
|
|
|
115 |
chunks.append(accumulated_text)
|
116 |
yield accumulated_text
|
117 |
|
118 |
+
return ''.join(chunks)
|