import requests import json import re from urllib.parse import quote def extract_between_tags(text, start_tag, end_tag): start_index = text.find(start_tag) end_index = text.find(end_tag, start_index) return text[start_index+len(start_tag):end_index] class VectaraQuery(): def __init__(self, api_key: str, customer_id: str, corpus_id: str, prompt_name: str = None): self.customer_id = customer_id self.corpus_id = corpus_id self.api_key = api_key self.prompt_name = prompt_name if prompt_name else "vectara-experimental-summary-ext-2023-12-11-large" self.conv_id = None def get_body(self, user_response: str): corpora_key_list = [{ 'customer_id': self.customer_id, 'corpus_id': self.corpus_id, 'lexical_interpolation_config': {'lambda': 0.025} }] user_response = user_response.replace('"', '\\"') # Escape double quotes prompt = f''' [ {{ "role": "system", "content": "You are an assistant that provides information about drink names based on a given corpus." }}, {{ "role": "user", "content": "{user_response}" }} ] ''' return { 'query': [ { 'query': user_response, 'start': 0, 'numResults': 10, 'corpusKey': corpora_key_list, 'context_config': { 'sentences_before': 2, 'sentences_after': 2, 'start_tag': "%START_SNIPPET%", 'end_tag': "%END_SNIPPET%", } } ] } def get_headers(self): return { "Content-Type": "application/json", "Accept": "application/json", "customer-id": self.customer_id, "x-api-key": self.api_key, "grpc-timeout": "60S" } def submit_query(self, query_str: str): endpoint = f"https://api.vectara.io/v1/stream-query" body = self.get_body(query_str) response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers(), stream=True) if response.status_code != 200: print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") return "Sorry, something went wrong in my brain. Please try again later." chunks = [] accumulated_text = "" # Initialize text accumulation pattern_max_length = 50 # Example heuristic for line in response.iter_lines(): if line: # filter out keep-alive new lines data = json.loads(line.decode('utf-8')) res = data['result'] response_set = res['responseSet'] if response_set is None: # grab next chunk and yield it as output summary = res.get('summary', None) if summary is None or len(summary)==0: continue else: chat = summary.get('chat', None) if chat and chat.get('status', None): st_code = chat['status'] print(f"Chat query failed with code {st_code}") if st_code == 'RESOURCE_EXHAUSTED': self.conv_id = None return 'Sorry, Vectara chat turns exceeds plan limit.' return 'Sorry, something went wrong in my brain. Please try again later.' conv_id = chat.get('conversationId', None) if chat else None if conv_id: self.conv_id = conv_id chunk = summary['text'] accumulated_text += chunk # Append current chunk to accumulation if len(accumulated_text) > pattern_max_length: accumulated_text = re.sub(r"\[\d+\]", "", accumulated_text) accumulated_text = re.sub(r"\s+\.", ".", accumulated_text) out_chunk = accumulated_text[:-pattern_max_length] chunks.append(out_chunk) yield out_chunk accumulated_text = accumulated_text[-pattern_max_length:] if summary['done']: break # yield the last piece if len(accumulated_text) > 0: accumulated_text = re.sub(r" \[\d+\]\.", ".", accumulated_text) chunks.append(accumulated_text) yield accumulated_text return ''.join(chunks)