iamshreeji commited on
Commit
b8300f1
·
1 Parent(s): 4a2af60

Add application file

Browse files
Files changed (1) hide show
  1. app.py +31 -4
app.py CHANGED
@@ -1,7 +1,34 @@
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
1
+ # import gradio as gr
2
+
3
+ # def greet(name):
4
+ # return "Hello " + name + "!!"
5
+
6
+ # iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
+ # iface.launch()
8
+
9
+ import torch
10
  import gradio as gr
11
+ from transformers import AutoModelForSequenceClassification
12
+
13
+ # Load your generator model checkpoint
14
+ generator_checkpoint_path = "/home/linux/Documents/Ravi_PHD_Data/hifi-gan/cp_hifigan/date_elevan_feb_twozerotwofour/g_00375000"
15
+
16
+ # Define your inference function
17
+ def generate_deepfake(wave_file):
18
+ # Load generator model
19
+ generator_model = AutoModelForSequenceClassification.from_pretrained(generator_checkpoint_path)
20
+
21
+ # Process input wave file (e.g., convert to spectrogram, extract features)
22
+ # Perform deepfake generation using the loaded model
23
+ # Replace the following lines with your actual deepfake generation logic
24
+ # For demonstration purposes, we'll just return the input wave file as-is.
25
+ deepfake_wave_file = wave_file
26
+
27
+ # Return the deepfake wave file
28
+ return deepfake_wave_file
29
 
30
+ # Create a Gradio interface
31
+ inputs = gr.inputs.Audio(label="Upload a wave file")
32
+ outputs = gr.outputs.Audio(label="Deepfake wave file")
33
+ gr.Interface(fn=generate_deepfake, inputs=inputs, outputs=outputs).launch()
34