# import gradio as gr # def greet(name): # return "Hello " + name + "!!" # iface = gr.Interface(fn=greet, inputs="text", outputs="text") # iface.launch() import torch import gradio as gr from transformers import AutoModelForSequenceClassification # Load your generator model checkpoint generator_checkpoint_path = "/home/linux/Documents/Ravi_PHD_Data/hifi-gan/cp_hifigan/date_elevan_feb_twozerotwofour/g_00375000" # Define your inference function def generate_deepfake(wave_file): # Load generator model generator_model = AutoModelForSequenceClassification.from_pretrained(generator_checkpoint_path) # Process input wave file (e.g., convert to spectrogram, extract features) # Perform deepfake generation using the loaded model # Replace the following lines with your actual deepfake generation logic # For demonstration purposes, we'll just return the input wave file as-is. deepfake_wave_file = wave_file # Return the deepfake wave file return deepfake_wave_file # Create a Gradio interface inputs = gr.inputs.Audio(label="Upload a wave file") outputs = gr.outputs.Audio(label="Deepfake wave file") gr.Interface(fn=generate_deepfake, inputs=inputs, outputs=outputs).launch()