Spaces:
Runtime error
Runtime error
File size: 5,945 Bytes
fa3f4ac d048461 fa3f4ac 637d603 fa3f4ac e30d598 fa3f4ac d690322 581abcb 41b64ac fa3f4ac 581abcb 55ce06e 41b64ac fad7236 8500830 fa3f4ac 4732c6d fad7236 fa3f4ac e30d598 fa3f4ac 581abcb fa3f4ac 8500830 fa3f4ac 12cfcfc fa3f4ac 8500830 fa3f4ac 12cfcfc fa3f4ac e30d598 fa3f4ac e30d598 581abcb 8500830 fa3f4ac 7af5da4 e30d598 d048461 fa3f4ac 55ce06e 06c8107 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
<p align="center">
<img src="assets/CodeFormer_logo.png" height=110>
</p>
## Towards Robust Blind Face Restoration with Codebook Lookup Transformer
[Paper](https://arxiv.org/abs/2206.11253) | [Project Page](https://shangchenzhou.com/projects/CodeFormer/) | [Video](https://youtu.be/d3VDpkXlueI)
<a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a> 
[Shangchen Zhou](https://shangchenzhou.com/), [Kelvin C.K. Chan](https://ckkelvinchan.github.io/), [Chongyi Li](https://li-chongyi.github.io/), [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/)
S-Lab, Nanyang Technological University
<img src="assets/network.jpg" width="800px"/>
:star: If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs:
### Updates
- **2022.09.04**: Add face upsampling '--face_upsample' for high-resolution AI-created face enhancement.
- **2022.08.23**: Some modifications on face detection and fusion for better AI-created face enhancement.
- **2022.08.07**: Integrate Real-ESRGAN to support background image enhancement.
- **2022.07.29**: Integrate new face detectors of `['RetinaFace'(default), 'YOLOv5']`.
- **2022.07.17**: Colab demo of CodeFormer is available now. <a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>
- **2022.07.16**: Test code for face restoration is released. :blush:
- **2022.06.21**: This repo is created.
### TODO
- [ ] Add checkpoint for face inpainting
- [ ] Add training code and config files
- [x] ~~Add background image enhancement~~
#### Face Restoration
<img src="assets/restoration_result1.png" width="400px"/> <img src="assets/restoration_result2.png" width="400px"/>
<img src="assets/restoration_result3.png" width="400px"/> <img src="assets/restoration_result4.png" width="400px"/>
#### Face Color Enhancement and Restoration
<img src="assets/color_enhancement_result1.png" width="400px"/> <img src="assets/color_enhancement_result2.png" width="400px"/>
#### Face Inpainting
<img src="assets/inpainting_result1.png" width="400px"/> <img src="assets/inpainting_result2.png" width="400px"/>
### Dependencies and Installation
- Pytorch >= 1.7.1
- CUDA >= 10.1
- Other required packages in `requirements.txt`
```
# git clone this repository
git clone https://github.com/sczhou/CodeFormer
cd CodeFormer
# create new anaconda env
conda create -n codeformer python=3.8 -y
conda activate codeformer
# install python dependencies
pip3 install -r requirements.txt
python basicsr/setup.py develop
```
<!-- conda install -c conda-forge dlib -->
### Quick Inference
##### Download Pre-trained Models:
Download the facelib pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by runing the following command.
```
python scripts/download_pretrained_models.py facelib
```
Download the CodeFormer pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by runing the following command.
```
python scripts/download_pretrained_models.py CodeFormer
```
##### Prepare Testing Data:
You can put the testing images in the `inputs/TestWhole` folder. If you would like to test on cropped and aligned faces, you can put them in the `inputs/cropped_faces` folder.
##### Testing on Face Restoration:
```
# For cropped and aligned faces
python inference_codeformer.py --w 0.5 --has_aligned --test_path [input folder]
# For the whole images
# Add '--bg_upsampler realesrgan' to enhance the background regions with Real-ESRGAN
# Add '--face_upsample' to further upsample restorated face with Real-ESRGAN
python inference_codeformer.py --w 0.7 --test_path [input folder]
```
NOTE that *w* is in [0, 1]. Generally, smaller *w* tends to produce a higher-quality result, while larger *w* yields a higher-fidelity result.
The results will be saved in the `results` folder.
### Citation
If our work is useful for your research, please consider citing:
@article{zhou2022codeformer,
author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
journal = {arXiv preprint arXiv:2206.11253},
year = {2022}
}
### License
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
### Acknowledgement
This project is based on [BasicSR](https://github.com/XPixelGroup/BasicSR). We also borrow some codes from [Unleashing Transformers](https://github.com/samb-t/unleashing-transformers), [YOLOv5-face](https://github.com/deepcam-cn/yolov5-face), and [FaceXLib](https://github.com/xinntao/facexlib). Thanks for their awesome works.
### Contact
If you have any question, please feel free to reach me out at `[email protected]`. |