File size: 7,542 Bytes
fa3f4ac
 
 
 
1fb2362
fa3f4ac
d048461
fa3f4ac
c5b4593
638853d
 
 
 
fa3f4ac
 
e30d598
fa3f4ac
 
 
 
d690322
581abcb
41b64ac
638853d
c5b4593
4d598f8
 
eb22a9a
55ce06e
c5b4593
fad7236
c5b4593
 
8500830
fa3f4ac
4732c6d
fad7236
 
 
fa3f4ac
638853d
 
 
fa3f4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e30d598
fa3f4ac
 
 
 
 
 
 
 
 
 
 
581abcb
fa3f4ac
 
 
 
 
8500830
fa3f4ac
 
 
f75e5d7
12cfcfc
fa3f4ac
8500830
fa3f4ac
 
12cfcfc
fa3f4ac
 
 
 
f75e5d7
fa3f4ac
 
 
f75e5d7
 
fa3f4ac
e30d598
 
f75e5d7
 
e30d598
581abcb
 
8500830
fa3f4ac
 
f75e5d7
e30d598
d048461
fa3f4ac
 
 
 
1fb2362
fa3f4ac
 
1fb2362
fa3f4ac
 
 
 
 
37e4140
fa3f4ac
 
 
0fb6cf1
06c8107
 
f75e5d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
<p align="center">
  <img src="assets/CodeFormer_logo.png" height=110>
</p>

## Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)

[Paper](https://arxiv.org/abs/2206.11253) | [Project Page](https://shangchenzhou.com/projects/CodeFormer/) | [Video](https://youtu.be/d3VDpkXlueI)


<a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a> [![Hugging Face](https://img.shields.io/badge/Demo-%F0%9F%A4%97%20Hugging%20Face-blue)](https://huggingface.co/spaces/sczhou/CodeFormer) [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/sczhou/codeformer) ![visitors](https://visitor-badge.glitch.me/badge?page_id=sczhou/CodeFormer)

<!-- ![visitors](https://visitor-badge.laobi.icu/badge?page_id=sczhou/CodeFormer) -->


[Shangchen Zhou](https://shangchenzhou.com/), [Kelvin C.K. Chan](https://ckkelvinchan.github.io/), [Chongyi Li](https://li-chongyi.github.io/), [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/) 

S-Lab, Nanyang Technological University

<img src="assets/network.jpg" width="800px"/>


:star: If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs: 

**[<font color=#d1585d>News</font>]**: :whale: *Due to copyright issues, we have to delay the release of the training code (expected by the end of this year). Please star and stay tuned for our future updates!* 
### Update
- **2022.09.14**: Integrated to :hugs: [Hugging Face](https://huggingface.co/spaces). Try out online demo! [![Hugging Face](https://img.shields.io/badge/Demo-%F0%9F%A4%97%20Hugging%20Face-blue)](https://huggingface.co/spaces/sczhou/CodeFormer)
- **2022.09.09**: Integrated to :rocket: [Replicate](https://replicate.com/explore). Try out online demo! [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/sczhou/codeformer)
- **2022.09.04**: Add face upsampling `--face_upsample` for high-resolution AI-created face enhancement.
- **2022.08.23**: Some modifications on face detection and fusion for better AI-created face enhancement.
- **2022.08.07**: Integrate [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to support background image enhancement.
- **2022.07.29**: Integrate new face detectors of `['RetinaFace'(default), 'YOLOv5']`. 
- **2022.07.17**: Add Colab demo of CodeFormer. <a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>
- **2022.07.16**: Release inference code for face restoration. :blush:
- **2022.06.21**: This repo is created.

### TODO
- [ ] Add checkpoint for face inpainting
- [ ] Add training code and config files
- [x] ~~Add background image enhancement~~

#### :panda_face: Try Enhancing Old Photos / Fixing AI-arts
[<img src="assets/imgsli_1.jpg" height="226px"/>](https://imgsli.com/MTI3NTE2) [<img src="assets/imgsli_2.jpg" height="226px"/>](https://imgsli.com/MTI3NTE1) [<img src="assets/imgsli_3.jpg" height="226px"/>](https://imgsli.com/MTI3NTIw) 

#### Face Restoration

<img src="assets/restoration_result1.png" width="400px"/> <img src="assets/restoration_result2.png" width="400px"/>
<img src="assets/restoration_result3.png" width="400px"/> <img src="assets/restoration_result4.png" width="400px"/>

#### Face Color Enhancement and Restoration

<img src="assets/color_enhancement_result1.png" width="400px"/> <img src="assets/color_enhancement_result2.png" width="400px"/>

#### Face Inpainting

<img src="assets/inpainting_result1.png" width="400px"/> <img src="assets/inpainting_result2.png" width="400px"/>



### Dependencies and Installation

- Pytorch >= 1.7.1
- CUDA >= 10.1
- Other required packages in `requirements.txt`
```
# git clone this repository
git clone https://github.com/sczhou/CodeFormer
cd CodeFormer

# create new anaconda env
conda create -n codeformer python=3.8 -y
conda activate codeformer

# install python dependencies
pip3 install -r requirements.txt
python basicsr/setup.py develop
```
<!-- conda install -c conda-forge dlib -->

### Quick Inference

#### Download Pre-trained Models:
Download the facelib pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by runing the following command.
```
python scripts/download_pretrained_models.py facelib
```

Download the CodeFormer pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by runing the following command.
```
python scripts/download_pretrained_models.py CodeFormer
```

#### Prepare Testing Data:
You can put the testing images in the `inputs/TestWhole` folder. If you would like to test on cropped and aligned faces, you can put them in the `inputs/cropped_faces` folder.


#### Testing on Face Restoration:
[Note] when comparing our model in your paper, please run the following command indicating `--has_aligned` (for cropped and aligned faces), as the command for the whole image will involve a process of face-background fusion that may damage hair texture on the boundary, which leads to unfair comparison.
```
# For cropped and aligned faces
python inference_codeformer.py --w 0.5 --has_aligned --test_path [input folder]
```
```
# For the whole images
# Add '--bg_upsampler realesrgan' to enhance the background regions with Real-ESRGAN
# Add '--face_upsample' to further upsample restorated face with Real-ESRGAN
python inference_codeformer.py --w 0.7 --test_path [input folder]
```

Fidelity weight *w* lays in [0, 1]. Generally, smaller *w* tends to produce a higher-quality result, while larger *w* yields a higher-fidelity result. 

The results will be saved in the `results` folder.

### Citation
If our work is useful for your research, please consider citing:

    @inproceedings{zhou2022codeformer,
        author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
        title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
        booktitle = {NeurIPS},
        year = {2022}
    }

### License

This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>. Redistribution and use for non-commercial purposes should follow this license.

### Acknowledgement

This project is based on [BasicSR](https://github.com/XPixelGroup/BasicSR). Some codes are brought from [Unleashing Transformers](https://github.com/samb-t/unleashing-transformers), [YOLOv5-face](https://github.com/deepcam-cn/yolov5-face), and [FaceXLib](https://github.com/xinntao/facexlib). We also adopt [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to support background image enhancement. Thanks for their awesome works.

### Contact
If you have any question, please feel free to reach me out at `[email protected]`.