Spaces:
Runtime error
Runtime error
import argparse | |
import glob | |
import time | |
from xml.sax import parse | |
import numpy as np | |
import os | |
import cv2 | |
import torch | |
import torchvision.transforms as transforms | |
from skimage import io | |
from basicsr.utils import imwrite, tensor2img | |
from basicsr.utils.face_util import FaceRestorationHelper | |
import torch.nn.functional as F | |
from basicsr.utils.registry import ARCH_REGISTRY | |
if __name__ == '__main__': | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--w', type=float, default=0.5, help='Balance the quality and fidelity') | |
parser.add_argument('--upscale_factor', type=int, default=2) | |
parser.add_argument('--test_path', type=str, default='./inputs/cropped_faces') | |
parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces') | |
parser.add_argument('--upsample_num_times', type=int, default=1, help='Upsample the image before face detection') | |
parser.add_argument('--save_inverse_affine', action='store_true') | |
parser.add_argument('--only_keep_largest', action='store_true') | |
parser.add_argument('--draw_box', action='store_true') | |
# The following are the paths for dlib models | |
parser.add_argument( | |
'--detection_path', type=str, | |
default='weights/dlib/mmod_human_face_detector-4cb19393.dat' | |
) | |
parser.add_argument( | |
'--landmark5_path', type=str, | |
default='weights/dlib/shape_predictor_5_face_landmarks-c4b1e980.dat' | |
) | |
parser.add_argument( | |
'--landmark68_path', type=str, | |
default='weights/dlib/shape_predictor_68_face_landmarks-fbdc2cb8.dat' | |
) | |
args = parser.parse_args() | |
if args.test_path.endswith('/'): # solve when path ends with / | |
args.test_path = args.test_path[:-1] | |
w = args.w | |
result_root = f'results/{os.path.basename(args.test_path)}_{w}' | |
# set up the Network | |
net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, | |
connect_list=['32', '64', '128', '256']).to(device) | |
ckpt_path = 'weights/CodeFormer/codeformer.pth' | |
checkpoint = torch.load(ckpt_path)['params_ema'] | |
net.load_state_dict(checkpoint) | |
net.eval() | |
save_crop_root = os.path.join(result_root, 'cropped_faces') | |
save_restore_root = os.path.join(result_root, 'restored_faces') | |
save_final_root = os.path.join(result_root, 'final_results') | |
save_input_root = os.path.join(result_root, 'inputs') | |
face_helper = FaceRestorationHelper(args.upscale_factor, face_size=512) | |
face_helper.init_dlib(args.detection_path, args.landmark5_path, args.landmark68_path) | |
# scan all the jpg and png images | |
for img_path in sorted(glob.glob(os.path.join(args.test_path, '*.[jp][pn]g'))): | |
img_name = os.path.basename(img_path) | |
print(f'Processing: {img_name}') | |
if args.has_aligned: | |
# the input faces are already cropped and aligned | |
img = cv2.imread(img_path, cv2.IMREAD_COLOR) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) | |
face_helper.cropped_faces = [img] | |
cropped_faces = face_helper.cropped_faces | |
else: | |
# detect faces | |
num_det_faces = face_helper.detect_faces( | |
img_path, upsample_num_times=args.upsample_num_times, only_keep_largest=args.only_keep_largest) | |
# get 5 face landmarks for each face | |
num_landmarks = face_helper.get_face_landmarks_5() | |
print(f'\tDetect {num_det_faces} faces, {num_landmarks} landmarks.') | |
# warp and crop each face | |
save_crop_path = os.path.join(save_crop_root, img_name) | |
face_helper.warp_crop_faces(save_crop_path, save_inverse_affine_path=None) | |
cropped_faces = face_helper.cropped_faces | |
# get 68 landmarks for each cropped face | |
# num_landmarks = face_helper.get_face_landmarks_68() | |
# print(f'\tDetect {num_landmarks} faces for 68 landmarks.') | |
# assert len(cropped_faces) == len(face_helper.all_landmarks_68) | |
# TODO | |
# face_helper.free_dlib_gpu_memory() | |
# face restoration for each cropped face | |
for idx, cropped_face in enumerate(cropped_faces): | |
# prepare data | |
cropped_face = transforms.ToTensor()(cropped_face) | |
cropped_face = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(cropped_face) | |
cropped_face = cropped_face.unsqueeze(0).to(device) | |
try: | |
with torch.no_grad(): | |
output = net(cropped_face, w=w, adain=True)[0] | |
restored_face = tensor2img(output, min_max=(-1, 1)) | |
del output | |
torch.cuda.empty_cache() | |
except Exception as error: | |
print(f'\tFailed inference for CodeFormer: {error}') | |
restored_face = tensor2img(cropped_face, min_max=(-1, 1)) | |
path = os.path.splitext(os.path.join(save_restore_root, img_name))[0] | |
if not args.has_aligned: | |
save_path = f'{path}_{idx:02d}.png' | |
face_helper.add_restored_face(restored_face) | |
else: | |
save_path = f'{path}.png' | |
imwrite(restored_face, save_path) | |
if not args.has_aligned: | |
# paste each restored face to the input image | |
face_helper.paste_faces_to_input_image(os.path.join(save_final_root, img_name), draw_box=args.draw_box) | |
# clean all the intermediate results to process the next image | |
face_helper.clean_all() | |
print(f'\nAll results are saved in {result_root}') | |