Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import argparse | |
import glob | |
import torch | |
from torchvision.transforms.functional import normalize | |
from basicsr.utils import imwrite, img2tensor, tensor2img | |
from basicsr.utils.download_util import load_file_from_url | |
from basicsr.utils.misc import get_device | |
from basicsr.utils.registry import ARCH_REGISTRY | |
pretrain_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer_inpainting.pth' | |
if __name__ == '__main__': | |
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
device = get_device() | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-i', '--input_path', type=str, default='./inputs/masked_faces', | |
help='Input image or folder. Default: inputs/masked_faces') | |
parser.add_argument('-o', '--output_path', type=str, default=None, | |
help='Output folder. Default: results/<input_name>') | |
parser.add_argument('--suffix', type=str, default=None, | |
help='Suffix of the restored faces. Default: None') | |
args = parser.parse_args() | |
# ------------------------ input & output ------------------------ | |
print('[NOTE] The input face images should be aligned and cropped to a resolution of 512x512.') | |
if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path | |
input_img_list = [args.input_path] | |
result_root = f'results/test_inpainting_img' | |
else: # input img folder | |
if args.input_path.endswith('/'): # solve when path ends with / | |
args.input_path = args.input_path[:-1] | |
# scan all the jpg and png images | |
input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]'))) | |
result_root = f'results/{os.path.basename(args.input_path)}' | |
if not args.output_path is None: # set output path | |
result_root = args.output_path | |
test_img_num = len(input_img_list) | |
# ------------------ set up CodeFormer restorer ------------------- | |
net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=512, n_head=8, n_layers=9, | |
connect_list=['32', '64', '128']).to(device) | |
# ckpt_path = 'weights/CodeFormer/codeformer.pth' | |
ckpt_path = load_file_from_url(url=pretrain_model_url, | |
model_dir='weights/CodeFormer', progress=True, file_name=None) | |
checkpoint = torch.load(ckpt_path)['params_ema'] | |
net.load_state_dict(checkpoint) | |
net.eval() | |
# -------------------- start to processing --------------------- | |
for i, img_path in enumerate(input_img_list): | |
img_name = os.path.basename(img_path) | |
basename, ext = os.path.splitext(img_name) | |
print(f'[{i+1}/{test_img_num}] Processing: {img_name}') | |
input_face = cv2.imread(img_path) | |
assert input_face.shape[:2] == (512, 512), 'Input resolution must be 512x512 for inpainting.' | |
# input_face = cv2.resize(input_face, (512, 512), interpolation=cv2.INTER_LINEAR) | |
input_face = img2tensor(input_face / 255., bgr2rgb=True, float32=True) | |
normalize(input_face, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) | |
input_face = input_face.unsqueeze(0).to(device) | |
try: | |
with torch.no_grad(): | |
mask = torch.zeros(512, 512) | |
m_ind = torch.sum(input_face[0], dim=0) | |
mask[m_ind==3] = 1.0 | |
mask = mask.view(1, 1, 512, 512).to(device) | |
# w is fixed to 1, adain=False for inpainting | |
output_face = net(input_face, w=1, adain=False)[0] | |
output_face = (1-mask)*input_face + mask*output_face | |
save_face = tensor2img(output_face, rgb2bgr=True, min_max=(-1, 1)) | |
del output_face | |
torch.cuda.empty_cache() | |
except Exception as error: | |
print(f'\tFailed inference for CodeFormer: {error}') | |
save_face = tensor2img(input_face, rgb2bgr=True, min_max=(-1, 1)) | |
save_face = save_face.astype('uint8') | |
# save face | |
if args.suffix is not None: | |
basename = f'{basename}_{args.suffix}' | |
save_restore_path = os.path.join(result_root, f'{basename}.png') | |
imwrite(save_face, save_restore_path) | |
print(f'\nAll results are saved in {result_root}') | |