Spaces:
Runtime error
Runtime error
""" | |
This file is used for deploying replicate demo: | |
https://replicate.com/sczhou/codeformer | |
running: cog predict -i image=@inputs/whole_imgs/04.jpg -i codeformer_fidelity=0.5 -i upscale=2 | |
push: cog push r8.im/sczhou/codeformer | |
""" | |
import tempfile | |
import cv2 | |
import torch | |
from torchvision.transforms.functional import normalize | |
try: | |
from cog import BasePredictor, Input, Path | |
except Exception: | |
print('please install cog package') | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
from basicsr.utils import imwrite, img2tensor, tensor2img | |
from basicsr.utils.realesrgan_utils import RealESRGANer | |
from basicsr.utils.misc import gpu_is_available | |
from basicsr.utils.registry import ARCH_REGISTRY | |
from facelib.utils.face_restoration_helper import FaceRestoreHelper | |
class Predictor(BasePredictor): | |
def setup(self): | |
"""Load the model into memory to make running multiple predictions efficient""" | |
self.device = "cuda:0" | |
self.upsampler = set_realesrgan() | |
self.net = ARCH_REGISTRY.get("CodeFormer")( | |
dim_embd=512, | |
codebook_size=1024, | |
n_head=8, | |
n_layers=9, | |
connect_list=["32", "64", "128", "256"], | |
).to(self.device) | |
ckpt_path = "weights/CodeFormer/codeformer.pth" | |
checkpoint = torch.load(ckpt_path)[ | |
"params_ema" | |
] # update file permission if cannot load | |
self.net.load_state_dict(checkpoint) | |
self.net.eval() | |
def predict( | |
self, | |
image: Path = Input(description="Input image"), | |
codeformer_fidelity: float = Input( | |
default=0.5, | |
ge=0, | |
le=1, | |
description="Balance the quality (lower number) and fidelity (higher number).", | |
), | |
background_enhance: bool = Input( | |
description="Enhance background image with Real-ESRGAN", default=True | |
), | |
face_upsample: bool = Input( | |
description="Upsample restored faces for high-resolution AI-created images", | |
default=True, | |
), | |
upscale: int = Input( | |
description="The final upsampling scale of the image", | |
default=2, | |
), | |
) -> Path: | |
"""Run a single prediction on the model""" | |
# take the default setting for the demo | |
has_aligned = False | |
only_center_face = False | |
draw_box = False | |
detection_model = "retinaface_resnet50" | |
self.face_helper = FaceRestoreHelper( | |
upscale, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model=detection_model, | |
save_ext="png", | |
use_parse=True, | |
device=self.device, | |
) | |
bg_upsampler = self.upsampler if background_enhance else None | |
face_upsampler = self.upsampler if face_upsample else None | |
img = cv2.imread(str(image), cv2.IMREAD_COLOR) | |
if has_aligned: | |
# the input faces are already cropped and aligned | |
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) | |
self.face_helper.cropped_faces = [img] | |
else: | |
self.face_helper.read_image(img) | |
# get face landmarks for each face | |
num_det_faces = self.face_helper.get_face_landmarks_5( | |
only_center_face=only_center_face, resize=640, eye_dist_threshold=5 | |
) | |
print(f"\tdetect {num_det_faces} faces") | |
# align and warp each face | |
self.face_helper.align_warp_face() | |
# face restoration for each cropped face | |
for idx, cropped_face in enumerate(self.face_helper.cropped_faces): | |
# prepare data | |
cropped_face_t = img2tensor( | |
cropped_face / 255.0, bgr2rgb=True, float32=True | |
) | |
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) | |
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device) | |
try: | |
with torch.no_grad(): | |
output = self.net( | |
cropped_face_t, w=codeformer_fidelity, adain=True | |
)[0] | |
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) | |
del output | |
torch.cuda.empty_cache() | |
except Exception as error: | |
print(f"\tFailed inference for CodeFormer: {error}") | |
restored_face = tensor2img( | |
cropped_face_t, rgb2bgr=True, min_max=(-1, 1) | |
) | |
restored_face = restored_face.astype("uint8") | |
self.face_helper.add_restored_face(restored_face) | |
# paste_back | |
if not has_aligned: | |
# upsample the background | |
if bg_upsampler is not None: | |
# Now only support RealESRGAN for upsampling background | |
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0] | |
else: | |
bg_img = None | |
self.face_helper.get_inverse_affine(None) | |
# paste each restored face to the input image | |
if face_upsample and face_upsampler is not None: | |
restored_img = self.face_helper.paste_faces_to_input_image( | |
upsample_img=bg_img, | |
draw_box=draw_box, | |
face_upsampler=face_upsampler, | |
) | |
else: | |
restored_img = self.face_helper.paste_faces_to_input_image( | |
upsample_img=bg_img, draw_box=draw_box | |
) | |
# save restored img | |
out_path = Path(tempfile.mkdtemp()) / 'output.png' | |
imwrite(restored_img, str(out_path)) | |
return out_path | |
def imread(img_path): | |
img = cv2.imread(img_path) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
return img | |
def set_realesrgan(): | |
# if not torch.cuda.is_available(): # CPU | |
if not gpu_is_available(): # CPU | |
import warnings | |
warnings.warn( | |
"The unoptimized RealESRGAN is slow on CPU. We do not use it. " | |
"If you really want to use it, please modify the corresponding codes.", | |
category=RuntimeWarning, | |
) | |
upsampler = None | |
else: | |
model = RRDBNet( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_block=23, | |
num_grow_ch=32, | |
scale=2, | |
) | |
upsampler = RealESRGANer( | |
scale=2, | |
model_path="./weights/realesrgan/RealESRGAN_x2plus.pth", | |
model=model, | |
tile=400, | |
tile_pad=40, | |
pre_pad=0, | |
half=True, | |
) | |
return upsampler | |