sczhou commited on
Commit
aeb20c8
·
1 Parent(s): e501cd0

release training codes and config files.

Browse files
README.md CHANGED
@@ -20,8 +20,9 @@ S-Lab, Nanyang Technological University
20
 
21
  :star: If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs:
22
 
23
- **[<font color=#d1585d>News</font>]**: :whale: *We regret to inform you that the release of our code will be postponed from its earlier plan. Nevertheless, we assure you that it will be made available **by the end of this April**. Thank you for your understanding and patience. Our apologies for any inconvenience this may cause.*
24
  ### Update
 
25
  - **2023.04.09**: Add features of inpainting and colorization for cropped and aligned face images.
26
  - **2023.02.10**: Include `dlib` as a new face detector option, it produces more accurate face identity.
27
  - **2022.10.05**: Support video input `--input_path [YOUR_VIDEO.mp4]`. Try it to enhance your videos! :clapper:
@@ -30,7 +31,7 @@ S-Lab, Nanyang Technological University
30
  - [**More**](docs/history_changelog.md)
31
 
32
  ### TODO
33
- - [ ] Add training code and config files
34
  - [x] Add checkpoint and script for face inpainting
35
  - [x] Add checkpoint and script for face colorization
36
  - [x] ~~Add background image enhancement~~
@@ -77,13 +78,13 @@ conda install -c conda-forge dlib (only for face detection or cropping with dlib
77
  ### Quick Inference
78
 
79
  #### Download Pre-trained Models:
80
- Download the facelib and dlib pretrained models from [[Releases](https://github.com/sczhou/CodeFormer/releases) | [Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by running the following command:
81
  ```
82
  python scripts/download_pretrained_models.py facelib
83
  python scripts/download_pretrained_models.py dlib (only for dlib face detector)
84
  ```
85
 
86
- Download the CodeFormer pretrained models from [[Releases](https://github.com/sczhou/CodeFormer/releases) | [Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by running the following command:
87
  ```
88
  python scripts/download_pretrained_models.py CodeFormer
89
  ```
@@ -141,7 +142,8 @@ python inference_colorization.py --input_path [image folder]|[image path]
141
  # (check out the examples in inputs/masked_faces)
142
  python inference_inpainting.py --input_path [image folder]|[image path]
143
  ```
144
-
 
145
 
146
  ### Citation
147
  If our work is useful for your research, please consider citing:
@@ -162,4 +164,4 @@ This project is licensed under <a rel="license" href="https://github.com/sczhou/
162
  This project is based on [BasicSR](https://github.com/XPixelGroup/BasicSR). Some codes are brought from [Unleashing Transformers](https://github.com/samb-t/unleashing-transformers), [YOLOv5-face](https://github.com/deepcam-cn/yolov5-face), and [FaceXLib](https://github.com/xinntao/facexlib). We also adopt [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to support background image enhancement. Thanks for their awesome works.
163
 
164
  ### Contact
165
- If you have any questions, please feel free to reach me out at `[email protected]`.
 
20
 
21
  :star: If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs:
22
 
23
+
24
  ### Update
25
+ - **2023.04.19**: :whale: Training codes and config files are public available now.
26
  - **2023.04.09**: Add features of inpainting and colorization for cropped and aligned face images.
27
  - **2023.02.10**: Include `dlib` as a new face detector option, it produces more accurate face identity.
28
  - **2022.10.05**: Support video input `--input_path [YOUR_VIDEO.mp4]`. Try it to enhance your videos! :clapper:
 
31
  - [**More**](docs/history_changelog.md)
32
 
33
  ### TODO
34
+ - [x] Add training code and config files
35
  - [x] Add checkpoint and script for face inpainting
36
  - [x] Add checkpoint and script for face colorization
37
  - [x] ~~Add background image enhancement~~
 
78
  ### Quick Inference
79
 
80
  #### Download Pre-trained Models:
81
+ Download the facelib and dlib pretrained models from [[Releases](https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0) | [Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by running the following command:
82
  ```
83
  python scripts/download_pretrained_models.py facelib
84
  python scripts/download_pretrained_models.py dlib (only for dlib face detector)
85
  ```
86
 
87
+ Download the CodeFormer pretrained models from [[Releases](https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0) | [Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by running the following command:
88
  ```
89
  python scripts/download_pretrained_models.py CodeFormer
90
  ```
 
142
  # (check out the examples in inputs/masked_faces)
143
  python inference_inpainting.py --input_path [image folder]|[image path]
144
  ```
145
+ #### Training:
146
+ You can find training commands in training documents: [English](docs/train.md) **|** [简体中文](docs/train_CN.md).
147
 
148
  ### Citation
149
  If our work is useful for your research, please consider citing:
 
164
  This project is based on [BasicSR](https://github.com/XPixelGroup/BasicSR). Some codes are brought from [Unleashing Transformers](https://github.com/samb-t/unleashing-transformers), [YOLOv5-face](https://github.com/deepcam-cn/yolov5-face), and [FaceXLib](https://github.com/xinntao/facexlib). We also adopt [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to support background image enhancement. Thanks for their awesome works.
165
 
166
  ### Contact
167
+ If you have any questions, please feel free to reach me out at `[email protected]`.
basicsr/archs/codeformer_arch.py CHANGED
@@ -162,9 +162,13 @@ class CodeFormer(VQAutoEncoder):
162
  def __init__(self, dim_embd=512, n_head=8, n_layers=9,
163
  codebook_size=1024, latent_size=256,
164
  connect_list=['32', '64', '128', '256'],
165
- fix_modules=['quantize','generator']):
166
  super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
167
 
 
 
 
 
168
  if fix_modules is not None:
169
  for module in fix_modules:
170
  for param in getattr(self, module).parameters():
 
162
  def __init__(self, dim_embd=512, n_head=8, n_layers=9,
163
  codebook_size=1024, latent_size=256,
164
  connect_list=['32', '64', '128', '256'],
165
+ fix_modules=['quantize','generator'], vqgan_path=None):
166
  super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
167
 
168
+ if vqgan_path is not None:
169
+ self.load_state_dict(
170
+ torch.load(vqgan_path, map_location='cpu')['params_ema'])
171
+
172
  if fix_modules is not None:
173
  for module in fix_modules:
174
  for param in getattr(self, module).parameters():
basicsr/data/data_util.py CHANGED
@@ -1,7 +1,9 @@
1
  import cv2
 
2
  import numpy as np
3
  import torch
4
  from os import path as osp
 
5
  from torch.nn import functional as F
6
 
7
  from basicsr.data.transforms import mod_crop
@@ -303,3 +305,88 @@ def duf_downsample(x, kernel_size=13, scale=4):
303
  if squeeze_flag:
304
  x = x.squeeze(0)
305
  return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import cv2
2
+ import math
3
  import numpy as np
4
  import torch
5
  from os import path as osp
6
+ from PIL import Image, ImageDraw
7
  from torch.nn import functional as F
8
 
9
  from basicsr.data.transforms import mod_crop
 
305
  if squeeze_flag:
306
  x = x.squeeze(0)
307
  return x
308
+
309
+
310
+ def brush_stroke_mask(img, color=(255,255,255)):
311
+ min_num_vertex = 8
312
+ max_num_vertex = 28
313
+ mean_angle = 2*math.pi / 5
314
+ angle_range = 2*math.pi / 12
315
+ # training large mask ratio (training setting)
316
+ min_width = 30
317
+ max_width = 70
318
+ # very large mask ratio (test setting and refine after 200k)
319
+ # min_width = 80
320
+ # max_width = 120
321
+ def generate_mask(H, W, img=None):
322
+ average_radius = math.sqrt(H*H+W*W) / 8
323
+ mask = Image.new('RGB', (W, H), 0)
324
+ if img is not None: mask = img # Image.fromarray(img)
325
+
326
+ for _ in range(np.random.randint(1, 4)):
327
+ num_vertex = np.random.randint(min_num_vertex, max_num_vertex)
328
+ angle_min = mean_angle - np.random.uniform(0, angle_range)
329
+ angle_max = mean_angle + np.random.uniform(0, angle_range)
330
+ angles = []
331
+ vertex = []
332
+ for i in range(num_vertex):
333
+ if i % 2 == 0:
334
+ angles.append(2*math.pi - np.random.uniform(angle_min, angle_max))
335
+ else:
336
+ angles.append(np.random.uniform(angle_min, angle_max))
337
+
338
+ h, w = mask.size
339
+ vertex.append((int(np.random.randint(0, w)), int(np.random.randint(0, h))))
340
+ for i in range(num_vertex):
341
+ r = np.clip(
342
+ np.random.normal(loc=average_radius, scale=average_radius//2),
343
+ 0, 2*average_radius)
344
+ new_x = np.clip(vertex[-1][0] + r * math.cos(angles[i]), 0, w)
345
+ new_y = np.clip(vertex[-1][1] + r * math.sin(angles[i]), 0, h)
346
+ vertex.append((int(new_x), int(new_y)))
347
+
348
+ draw = ImageDraw.Draw(mask)
349
+ width = int(np.random.uniform(min_width, max_width))
350
+ draw.line(vertex, fill=color, width=width)
351
+ for v in vertex:
352
+ draw.ellipse((v[0] - width//2,
353
+ v[1] - width//2,
354
+ v[0] + width//2,
355
+ v[1] + width//2),
356
+ fill=color)
357
+
358
+ return mask
359
+
360
+ width, height = img.size
361
+ mask = generate_mask(height, width, img)
362
+ return mask
363
+
364
+
365
+ def random_ff_mask(shape, max_angle = 10, max_len = 100, max_width = 70, times = 10):
366
+ """Generate a random free form mask with configuration.
367
+ Args:
368
+ config: Config should have configuration including IMG_SHAPES,
369
+ VERTICAL_MARGIN, HEIGHT, HORIZONTAL_MARGIN, WIDTH.
370
+ Returns:
371
+ tuple: (top, left, height, width)
372
+ Link:
373
+ https://github.com/csqiangwen/DeepFillv2_Pytorch/blob/master/train_dataset.py
374
+ """
375
+ height = shape[0]
376
+ width = shape[1]
377
+ mask = np.zeros((height, width), np.float32)
378
+ times = np.random.randint(times-5, times)
379
+ for i in range(times):
380
+ start_x = np.random.randint(width)
381
+ start_y = np.random.randint(height)
382
+ for j in range(1 + np.random.randint(5)):
383
+ angle = 0.01 + np.random.randint(max_angle)
384
+ if i % 2 == 0:
385
+ angle = 2 * 3.1415926 - angle
386
+ length = 10 + np.random.randint(max_len-20, max_len)
387
+ brush_w = 5 + np.random.randint(max_width-30, max_width)
388
+ end_x = (start_x + length * np.sin(angle)).astype(np.int32)
389
+ end_y = (start_y + length * np.cos(angle)).astype(np.int32)
390
+ cv2.line(mask, (start_y, start_x), (end_y, end_x), 1.0, brush_w)
391
+ start_x, start_y = end_x, end_y
392
+ return mask.astype(np.float32)
basicsr/data/ffhq_blind_joint_dataset.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import random
4
+ import numpy as np
5
+ import os.path as osp
6
+ from scipy.io import loadmat
7
+ from PIL import Image, ImageDraw
8
+ import torch
9
+ import torch.utils.data as data
10
+ from torchvision.transforms.functional import (adjust_brightness, adjust_contrast,
11
+ adjust_hue, adjust_saturation, normalize)
12
+ from basicsr.data import gaussian_kernels as gaussian_kernels
13
+ from basicsr.data.data_util import paths_from_folder
14
+ from basicsr.data.transforms import augment, img_rotate
15
+ from basicsr.metrics.psnr_ssim import calculate_psnr
16
+ from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
17
+ from basicsr.utils.matlab_functions import imresize
18
+ from basicsr.utils.registry import DATASET_REGISTRY
19
+
20
+ @DATASET_REGISTRY.register()
21
+ class FFHQBlindJointDataset(data.Dataset):
22
+
23
+ def __init__(self, opt):
24
+ super(FFHQBlindJointDataset, self).__init__()
25
+ logger = get_root_logger()
26
+ self.opt = opt
27
+ # file client (io backend)
28
+ self.file_client = None
29
+ self.io_backend_opt = opt['io_backend']
30
+
31
+ self.gt_folder = opt['dataroot_gt']
32
+ self.gt_size = opt.get('gt_size', 512)
33
+ self.in_size = opt.get('in_size', 512)
34
+ assert self.gt_size >= self.in_size, 'Wrong setting.'
35
+
36
+ self.mean = opt.get('mean', [0.5, 0.5, 0.5])
37
+ self.std = opt.get('std', [0.5, 0.5, 0.5])
38
+
39
+ self.component_path = opt.get('component_path', None)
40
+ self.latent_gt_path = opt.get('latent_gt_path', None)
41
+
42
+ if self.component_path is not None:
43
+ self.crop_components = True
44
+ self.components_dict = torch.load(self.component_path)
45
+ self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1.4)
46
+ self.nose_enlarge_ratio = opt.get('nose_enlarge_ratio', 1.1)
47
+ self.mouth_enlarge_ratio = opt.get('mouth_enlarge_ratio', 1.3)
48
+ else:
49
+ self.crop_components = False
50
+
51
+ if self.latent_gt_path is not None:
52
+ self.load_latent_gt = True
53
+ self.latent_gt_dict = torch.load(self.latent_gt_path)
54
+ else:
55
+ self.load_latent_gt = False
56
+
57
+ if self.io_backend_opt['type'] == 'lmdb':
58
+ self.io_backend_opt['db_paths'] = self.gt_folder
59
+ if not self.gt_folder.endswith('.lmdb'):
60
+ raise ValueError("'dataroot_gt' should end with '.lmdb', "f'but received {self.gt_folder}')
61
+ with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
62
+ self.paths = [line.split('.')[0] for line in fin]
63
+ else:
64
+ self.paths = paths_from_folder(self.gt_folder)
65
+
66
+ # perform corrupt
67
+ self.use_corrupt = opt.get('use_corrupt', True)
68
+ self.use_motion_kernel = False
69
+ # self.use_motion_kernel = opt.get('use_motion_kernel', True)
70
+
71
+ if self.use_motion_kernel:
72
+ self.motion_kernel_prob = opt.get('motion_kernel_prob', 0.001)
73
+ motion_kernel_path = opt.get('motion_kernel_path', 'basicsr/data/motion-blur-kernels-32.pth')
74
+ self.motion_kernels = torch.load(motion_kernel_path)
75
+
76
+ if self.use_corrupt:
77
+ # degradation configurations
78
+ self.blur_kernel_size = self.opt['blur_kernel_size']
79
+ self.kernel_list = self.opt['kernel_list']
80
+ self.kernel_prob = self.opt['kernel_prob']
81
+ # Small degradation
82
+ self.blur_sigma = self.opt['blur_sigma']
83
+ self.downsample_range = self.opt['downsample_range']
84
+ self.noise_range = self.opt['noise_range']
85
+ self.jpeg_range = self.opt['jpeg_range']
86
+ # Large degradation
87
+ self.blur_sigma_large = self.opt['blur_sigma_large']
88
+ self.downsample_range_large = self.opt['downsample_range_large']
89
+ self.noise_range_large = self.opt['noise_range_large']
90
+ self.jpeg_range_large = self.opt['jpeg_range_large']
91
+
92
+ # print
93
+ logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]')
94
+ logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]')
95
+ logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]')
96
+ logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]')
97
+
98
+ # color jitter
99
+ self.color_jitter_prob = opt.get('color_jitter_prob', None)
100
+ self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob', None)
101
+ self.color_jitter_shift = opt.get('color_jitter_shift', 20)
102
+ if self.color_jitter_prob is not None:
103
+ logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}')
104
+
105
+ # to gray
106
+ self.gray_prob = opt.get('gray_prob', 0.0)
107
+ if self.gray_prob is not None:
108
+ logger.info(f'Use random gray. Prob: {self.gray_prob}')
109
+ self.color_jitter_shift /= 255.
110
+
111
+ @staticmethod
112
+ def color_jitter(img, shift):
113
+ """jitter color: randomly jitter the RGB values, in numpy formats"""
114
+ jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)
115
+ img = img + jitter_val
116
+ img = np.clip(img, 0, 1)
117
+ return img
118
+
119
+ @staticmethod
120
+ def color_jitter_pt(img, brightness, contrast, saturation, hue):
121
+ """jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats"""
122
+ fn_idx = torch.randperm(4)
123
+ for fn_id in fn_idx:
124
+ if fn_id == 0 and brightness is not None:
125
+ brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
126
+ img = adjust_brightness(img, brightness_factor)
127
+
128
+ if fn_id == 1 and contrast is not None:
129
+ contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
130
+ img = adjust_contrast(img, contrast_factor)
131
+
132
+ if fn_id == 2 and saturation is not None:
133
+ saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
134
+ img = adjust_saturation(img, saturation_factor)
135
+
136
+ if fn_id == 3 and hue is not None:
137
+ hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
138
+ img = adjust_hue(img, hue_factor)
139
+ return img
140
+
141
+
142
+ def get_component_locations(self, name, status):
143
+ components_bbox = self.components_dict[name]
144
+ if status[0]: # hflip
145
+ # exchange right and left eye
146
+ tmp = components_bbox['left_eye']
147
+ components_bbox['left_eye'] = components_bbox['right_eye']
148
+ components_bbox['right_eye'] = tmp
149
+ # modify the width coordinate
150
+ components_bbox['left_eye'][0] = self.gt_size - components_bbox['left_eye'][0]
151
+ components_bbox['right_eye'][0] = self.gt_size - components_bbox['right_eye'][0]
152
+ components_bbox['nose'][0] = self.gt_size - components_bbox['nose'][0]
153
+ components_bbox['mouth'][0] = self.gt_size - components_bbox['mouth'][0]
154
+
155
+ locations_gt = {}
156
+ locations_in = {}
157
+ for part in ['left_eye', 'right_eye', 'nose', 'mouth']:
158
+ mean = components_bbox[part][0:2]
159
+ half_len = components_bbox[part][2]
160
+ if 'eye' in part:
161
+ half_len *= self.eye_enlarge_ratio
162
+ elif part == 'nose':
163
+ half_len *= self.nose_enlarge_ratio
164
+ elif part == 'mouth':
165
+ half_len *= self.mouth_enlarge_ratio
166
+ loc = np.hstack((mean - half_len + 1, mean + half_len))
167
+ loc = torch.from_numpy(loc).float()
168
+ locations_gt[part] = loc
169
+ loc_in = loc/(self.gt_size//self.in_size)
170
+ locations_in[part] = loc_in
171
+ return locations_gt, locations_in
172
+
173
+
174
+ def __getitem__(self, index):
175
+ if self.file_client is None:
176
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
177
+
178
+ # load gt image
179
+ gt_path = self.paths[index]
180
+ name = osp.basename(gt_path)[:-4]
181
+ img_bytes = self.file_client.get(gt_path)
182
+ img_gt = imfrombytes(img_bytes, float32=True)
183
+
184
+ # random horizontal flip
185
+ img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True)
186
+
187
+ if self.load_latent_gt:
188
+ if status[0]:
189
+ latent_gt = self.latent_gt_dict['hflip'][name]
190
+ else:
191
+ latent_gt = self.latent_gt_dict['orig'][name]
192
+
193
+ if self.crop_components:
194
+ locations_gt, locations_in = self.get_component_locations(name, status)
195
+
196
+ # generate in image
197
+ img_in = img_gt
198
+ if self.use_corrupt:
199
+ # motion blur
200
+ if self.use_motion_kernel and random.random() < self.motion_kernel_prob:
201
+ m_i = random.randint(0,31)
202
+ k = self.motion_kernels[f'{m_i:02d}']
203
+ img_in = cv2.filter2D(img_in,-1,k)
204
+
205
+ # gaussian blur
206
+ kernel = gaussian_kernels.random_mixed_kernels(
207
+ self.kernel_list,
208
+ self.kernel_prob,
209
+ self.blur_kernel_size,
210
+ self.blur_sigma,
211
+ self.blur_sigma,
212
+ [-math.pi, math.pi],
213
+ noise_range=None)
214
+ img_in = cv2.filter2D(img_in, -1, kernel)
215
+
216
+ # downsample
217
+ scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1])
218
+ img_in = cv2.resize(img_in, (int(self.gt_size // scale), int(self.gt_size // scale)), interpolation=cv2.INTER_LINEAR)
219
+
220
+ # noise
221
+ if self.noise_range is not None:
222
+ noise_sigma = np.random.uniform(self.noise_range[0] / 255., self.noise_range[1] / 255.)
223
+ noise = np.float32(np.random.randn(*(img_in.shape))) * noise_sigma
224
+ img_in = img_in + noise
225
+ img_in = np.clip(img_in, 0, 1)
226
+
227
+ # jpeg
228
+ if self.jpeg_range is not None:
229
+ jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
230
+ encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
231
+ _, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
232
+ img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
233
+
234
+ # resize to in_size
235
+ img_in = cv2.resize(img_in, (self.in_size, self.in_size), interpolation=cv2.INTER_LINEAR)
236
+
237
+
238
+ # generate in_large with large degradation
239
+ img_in_large = img_gt
240
+
241
+ if self.use_corrupt:
242
+ # motion blur
243
+ if self.use_motion_kernel and random.random() < self.motion_kernel_prob:
244
+ m_i = random.randint(0,31)
245
+ k = self.motion_kernels[f'{m_i:02d}']
246
+ img_in_large = cv2.filter2D(img_in_large,-1,k)
247
+
248
+ # gaussian blur
249
+ kernel = gaussian_kernels.random_mixed_kernels(
250
+ self.kernel_list,
251
+ self.kernel_prob,
252
+ self.blur_kernel_size,
253
+ self.blur_sigma_large,
254
+ self.blur_sigma_large,
255
+ [-math.pi, math.pi],
256
+ noise_range=None)
257
+ img_in_large = cv2.filter2D(img_in_large, -1, kernel)
258
+
259
+ # downsample
260
+ scale = np.random.uniform(self.downsample_range_large[0], self.downsample_range_large[1])
261
+ img_in_large = cv2.resize(img_in_large, (int(self.gt_size // scale), int(self.gt_size // scale)), interpolation=cv2.INTER_LINEAR)
262
+
263
+ # noise
264
+ if self.noise_range_large is not None:
265
+ noise_sigma = np.random.uniform(self.noise_range_large[0] / 255., self.noise_range_large[1] / 255.)
266
+ noise = np.float32(np.random.randn(*(img_in_large.shape))) * noise_sigma
267
+ img_in_large = img_in_large + noise
268
+ img_in_large = np.clip(img_in_large, 0, 1)
269
+
270
+ # jpeg
271
+ if self.jpeg_range_large is not None:
272
+ jpeg_p = np.random.uniform(self.jpeg_range_large[0], self.jpeg_range_large[1])
273
+ encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
274
+ _, encimg = cv2.imencode('.jpg', img_in_large * 255., encode_param)
275
+ img_in_large = np.float32(cv2.imdecode(encimg, 1)) / 255.
276
+
277
+ # resize to in_size
278
+ img_in_large = cv2.resize(img_in_large, (self.in_size, self.in_size), interpolation=cv2.INTER_LINEAR)
279
+
280
+
281
+ # random color jitter (only for lq)
282
+ if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob):
283
+ img_in = self.color_jitter(img_in, self.color_jitter_shift)
284
+ img_in_large = self.color_jitter(img_in_large, self.color_jitter_shift)
285
+ # random to gray (only for lq)
286
+ if self.gray_prob and np.random.uniform() < self.gray_prob:
287
+ img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2GRAY)
288
+ img_in = np.tile(img_in[:, :, None], [1, 1, 3])
289
+ img_in_large = cv2.cvtColor(img_in_large, cv2.COLOR_BGR2GRAY)
290
+ img_in_large = np.tile(img_in_large[:, :, None], [1, 1, 3])
291
+
292
+ # BGR to RGB, HWC to CHW, numpy to tensor
293
+ img_in, img_in_large, img_gt = img2tensor([img_in, img_in_large, img_gt], bgr2rgb=True, float32=True)
294
+
295
+ # random color jitter (pytorch version) (only for lq)
296
+ if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob):
297
+ brightness = self.opt.get('brightness', (0.5, 1.5))
298
+ contrast = self.opt.get('contrast', (0.5, 1.5))
299
+ saturation = self.opt.get('saturation', (0, 1.5))
300
+ hue = self.opt.get('hue', (-0.1, 0.1))
301
+ img_in = self.color_jitter_pt(img_in, brightness, contrast, saturation, hue)
302
+ img_in_large = self.color_jitter_pt(img_in_large, brightness, contrast, saturation, hue)
303
+
304
+ # round and clip
305
+ img_in = np.clip((img_in * 255.0).round(), 0, 255) / 255.
306
+ img_in_large = np.clip((img_in_large * 255.0).round(), 0, 255) / 255.
307
+
308
+ # Set vgg range_norm=True if use the normalization here
309
+ # normalize
310
+ normalize(img_in, self.mean, self.std, inplace=True)
311
+ normalize(img_in_large, self.mean, self.std, inplace=True)
312
+ normalize(img_gt, self.mean, self.std, inplace=True)
313
+
314
+ return_dict = {'in': img_in, 'in_large_de': img_in_large, 'gt': img_gt, 'gt_path': gt_path}
315
+
316
+ if self.crop_components:
317
+ return_dict['locations_in'] = locations_in
318
+ return_dict['locations_gt'] = locations_gt
319
+
320
+ if self.load_latent_gt:
321
+ return_dict['latent_gt'] = latent_gt
322
+
323
+ return return_dict
324
+
325
+
326
+ def __len__(self):
327
+ return len(self.paths)
basicsr/data/paired_image_dataset.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils import data as data
2
+ from torchvision.transforms.functional import normalize
3
+
4
+ from basicsr.data.data_util import paired_paths_from_folder, paired_paths_from_lmdb, paired_paths_from_meta_info_file
5
+ from basicsr.data.transforms import augment, paired_random_crop
6
+ from basicsr.utils import FileClient, imfrombytes, img2tensor
7
+ from basicsr.utils.registry import DATASET_REGISTRY
8
+
9
+
10
+ @DATASET_REGISTRY.register()
11
+ class PairedImageDataset(data.Dataset):
12
+ """Paired image dataset for image restoration.
13
+
14
+ Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and
15
+ GT image pairs.
16
+
17
+ There are three modes:
18
+ 1. 'lmdb': Use lmdb files.
19
+ If opt['io_backend'] == lmdb.
20
+ 2. 'meta_info_file': Use meta information file to generate paths.
21
+ If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None.
22
+ 3. 'folder': Scan folders to generate paths.
23
+ The rest.
24
+
25
+ Args:
26
+ opt (dict): Config for train datasets. It contains the following keys:
27
+ dataroot_gt (str): Data root path for gt.
28
+ dataroot_lq (str): Data root path for lq.
29
+ meta_info_file (str): Path for meta information file.
30
+ io_backend (dict): IO backend type and other kwarg.
31
+ filename_tmpl (str): Template for each filename. Note that the
32
+ template excludes the file extension. Default: '{}'.
33
+ gt_size (int): Cropped patched size for gt patches.
34
+ use_flip (bool): Use horizontal flips.
35
+ use_rot (bool): Use rotation (use vertical flip and transposing h
36
+ and w for implementation).
37
+
38
+ scale (bool): Scale, which will be added automatically.
39
+ phase (str): 'train' or 'val'.
40
+ """
41
+
42
+ def __init__(self, opt):
43
+ super(PairedImageDataset, self).__init__()
44
+ self.opt = opt
45
+ # file client (io backend)
46
+ self.file_client = None
47
+ self.io_backend_opt = opt['io_backend']
48
+ self.mean = opt['mean'] if 'mean' in opt else None
49
+ self.std = opt['std'] if 'std' in opt else None
50
+
51
+ self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
52
+ if 'filename_tmpl' in opt:
53
+ self.filename_tmpl = opt['filename_tmpl']
54
+ else:
55
+ self.filename_tmpl = '{}'
56
+
57
+ if self.io_backend_opt['type'] == 'lmdb':
58
+ self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder]
59
+ self.io_backend_opt['client_keys'] = ['lq', 'gt']
60
+ self.paths = paired_paths_from_lmdb([self.lq_folder, self.gt_folder], ['lq', 'gt'])
61
+ elif 'meta_info_file' in self.opt and self.opt['meta_info_file'] is not None:
62
+ self.paths = paired_paths_from_meta_info_file([self.lq_folder, self.gt_folder], ['lq', 'gt'],
63
+ self.opt['meta_info_file'], self.filename_tmpl)
64
+ else:
65
+ self.paths = paired_paths_from_folder([self.lq_folder, self.gt_folder], ['lq', 'gt'], self.filename_tmpl)
66
+
67
+ def __getitem__(self, index):
68
+ if self.file_client is None:
69
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
70
+
71
+ scale = self.opt['scale']
72
+
73
+ # Load gt and lq images. Dimension order: HWC; channel order: BGR;
74
+ # image range: [0, 1], float32.
75
+ gt_path = self.paths[index]['gt_path']
76
+ img_bytes = self.file_client.get(gt_path, 'gt')
77
+ img_gt = imfrombytes(img_bytes, float32=True)
78
+ lq_path = self.paths[index]['lq_path']
79
+ img_bytes = self.file_client.get(lq_path, 'lq')
80
+ img_lq = imfrombytes(img_bytes, float32=True)
81
+
82
+ # augmentation for training
83
+ if self.opt['phase'] == 'train':
84
+ gt_size = self.opt['gt_size']
85
+ # random crop
86
+ img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, gt_path)
87
+ # flip, rotation
88
+ img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_flip'], self.opt['use_rot'])
89
+
90
+ # TODO: color space transform
91
+ # BGR to RGB, HWC to CHW, numpy to tensor
92
+ img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
93
+ # normalize
94
+ if self.mean is not None or self.std is not None:
95
+ normalize(img_lq, self.mean, self.std, inplace=True)
96
+ normalize(img_gt, self.mean, self.std, inplace=True)
97
+
98
+ return {'lq': img_lq, 'gt': img_gt, 'lq_path': lq_path, 'gt_path': gt_path}
99
+
100
+ def __len__(self):
101
+ return len(self.paths)
basicsr/models/base_model.py ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ import torch
4
+ from collections import OrderedDict
5
+ from copy import deepcopy
6
+ from torch.nn.parallel import DataParallel, DistributedDataParallel
7
+
8
+ from basicsr.models import lr_scheduler as lr_scheduler
9
+ from basicsr.utils.dist_util import master_only
10
+
11
+ logger = logging.getLogger('basicsr')
12
+
13
+
14
+ class BaseModel():
15
+ """Base model."""
16
+
17
+ def __init__(self, opt):
18
+ self.opt = opt
19
+ self.device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu')
20
+ self.is_train = opt['is_train']
21
+ self.schedulers = []
22
+ self.optimizers = []
23
+
24
+ def feed_data(self, data):
25
+ pass
26
+
27
+ def optimize_parameters(self):
28
+ pass
29
+
30
+ def get_current_visuals(self):
31
+ pass
32
+
33
+ def save(self, epoch, current_iter):
34
+ """Save networks and training state."""
35
+ pass
36
+
37
+ def validation(self, dataloader, current_iter, tb_logger, save_img=False):
38
+ """Validation function.
39
+
40
+ Args:
41
+ dataloader (torch.utils.data.DataLoader): Validation dataloader.
42
+ current_iter (int): Current iteration.
43
+ tb_logger (tensorboard logger): Tensorboard logger.
44
+ save_img (bool): Whether to save images. Default: False.
45
+ """
46
+ if self.opt['dist']:
47
+ self.dist_validation(dataloader, current_iter, tb_logger, save_img)
48
+ else:
49
+ self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
50
+
51
+ def model_ema(self, decay=0.999):
52
+ net_g = self.get_bare_model(self.net_g)
53
+
54
+ net_g_params = dict(net_g.named_parameters())
55
+ net_g_ema_params = dict(self.net_g_ema.named_parameters())
56
+
57
+ for k in net_g_ema_params.keys():
58
+ net_g_ema_params[k].data.mul_(decay).add_(net_g_params[k].data, alpha=1 - decay)
59
+
60
+ def get_current_log(self):
61
+ return self.log_dict
62
+
63
+ def model_to_device(self, net):
64
+ """Model to device. It also warps models with DistributedDataParallel
65
+ or DataParallel.
66
+
67
+ Args:
68
+ net (nn.Module)
69
+ """
70
+ net = net.to(self.device)
71
+ if self.opt['dist']:
72
+ find_unused_parameters = self.opt.get('find_unused_parameters', False)
73
+ net = DistributedDataParallel(
74
+ net, device_ids=[torch.cuda.current_device()], find_unused_parameters=find_unused_parameters)
75
+ elif self.opt['num_gpu'] > 1:
76
+ net = DataParallel(net)
77
+ return net
78
+
79
+ def get_optimizer(self, optim_type, params, lr, **kwargs):
80
+ if optim_type == 'Adam':
81
+ optimizer = torch.optim.Adam(params, lr, **kwargs)
82
+ else:
83
+ raise NotImplementedError(f'optimizer {optim_type} is not supperted yet.')
84
+ return optimizer
85
+
86
+ def setup_schedulers(self):
87
+ """Set up schedulers."""
88
+ train_opt = self.opt['train']
89
+ scheduler_type = train_opt['scheduler'].pop('type')
90
+ if scheduler_type in ['MultiStepLR', 'MultiStepRestartLR']:
91
+ for optimizer in self.optimizers:
92
+ self.schedulers.append(lr_scheduler.MultiStepRestartLR(optimizer, **train_opt['scheduler']))
93
+ elif scheduler_type == 'CosineAnnealingRestartLR':
94
+ for optimizer in self.optimizers:
95
+ self.schedulers.append(lr_scheduler.CosineAnnealingRestartLR(optimizer, **train_opt['scheduler']))
96
+ else:
97
+ raise NotImplementedError(f'Scheduler {scheduler_type} is not implemented yet.')
98
+
99
+ def get_bare_model(self, net):
100
+ """Get bare model, especially under wrapping with
101
+ DistributedDataParallel or DataParallel.
102
+ """
103
+ if isinstance(net, (DataParallel, DistributedDataParallel)):
104
+ net = net.module
105
+ return net
106
+
107
+ @master_only
108
+ def print_network(self, net):
109
+ """Print the str and parameter number of a network.
110
+
111
+ Args:
112
+ net (nn.Module)
113
+ """
114
+ if isinstance(net, (DataParallel, DistributedDataParallel)):
115
+ net_cls_str = (f'{net.__class__.__name__} - ' f'{net.module.__class__.__name__}')
116
+ else:
117
+ net_cls_str = f'{net.__class__.__name__}'
118
+
119
+ net = self.get_bare_model(net)
120
+ net_str = str(net)
121
+ net_params = sum(map(lambda x: x.numel(), net.parameters()))
122
+
123
+ logger.info(f'Network: {net_cls_str}, with parameters: {net_params:,d}')
124
+ logger.info(net_str)
125
+
126
+ def _set_lr(self, lr_groups_l):
127
+ """Set learning rate for warmup.
128
+
129
+ Args:
130
+ lr_groups_l (list): List for lr_groups, each for an optimizer.
131
+ """
132
+ for optimizer, lr_groups in zip(self.optimizers, lr_groups_l):
133
+ for param_group, lr in zip(optimizer.param_groups, lr_groups):
134
+ param_group['lr'] = lr
135
+
136
+ def _get_init_lr(self):
137
+ """Get the initial lr, which is set by the scheduler.
138
+ """
139
+ init_lr_groups_l = []
140
+ for optimizer in self.optimizers:
141
+ init_lr_groups_l.append([v['initial_lr'] for v in optimizer.param_groups])
142
+ return init_lr_groups_l
143
+
144
+ def update_learning_rate(self, current_iter, warmup_iter=-1):
145
+ """Update learning rate.
146
+
147
+ Args:
148
+ current_iter (int): Current iteration.
149
+ warmup_iter (int): Warmup iter numbers. -1 for no warmup.
150
+ Default: -1.
151
+ """
152
+ if current_iter > 1:
153
+ for scheduler in self.schedulers:
154
+ scheduler.step()
155
+ # set up warm-up learning rate
156
+ if current_iter < warmup_iter:
157
+ # get initial lr for each group
158
+ init_lr_g_l = self._get_init_lr()
159
+ # modify warming-up learning rates
160
+ # currently only support linearly warm up
161
+ warm_up_lr_l = []
162
+ for init_lr_g in init_lr_g_l:
163
+ warm_up_lr_l.append([v / warmup_iter * current_iter for v in init_lr_g])
164
+ # set learning rate
165
+ self._set_lr(warm_up_lr_l)
166
+
167
+ def get_current_learning_rate(self):
168
+ return [param_group['lr'] for param_group in self.optimizers[0].param_groups]
169
+
170
+ @master_only
171
+ def save_network(self, net, net_label, current_iter, param_key='params'):
172
+ """Save networks.
173
+
174
+ Args:
175
+ net (nn.Module | list[nn.Module]): Network(s) to be saved.
176
+ net_label (str): Network label.
177
+ current_iter (int): Current iter number.
178
+ param_key (str | list[str]): The parameter key(s) to save network.
179
+ Default: 'params'.
180
+ """
181
+ if current_iter == -1:
182
+ current_iter = 'latest'
183
+ save_filename = f'{net_label}_{current_iter}.pth'
184
+ save_path = os.path.join(self.opt['path']['models'], save_filename)
185
+
186
+ net = net if isinstance(net, list) else [net]
187
+ param_key = param_key if isinstance(param_key, list) else [param_key]
188
+ assert len(net) == len(param_key), 'The lengths of net and param_key should be the same.'
189
+
190
+ save_dict = {}
191
+ for net_, param_key_ in zip(net, param_key):
192
+ net_ = self.get_bare_model(net_)
193
+ state_dict = net_.state_dict()
194
+ for key, param in state_dict.items():
195
+ if key.startswith('module.'): # remove unnecessary 'module.'
196
+ key = key[7:]
197
+ state_dict[key] = param.cpu()
198
+ save_dict[param_key_] = state_dict
199
+
200
+ torch.save(save_dict, save_path)
201
+
202
+ def _print_different_keys_loading(self, crt_net, load_net, strict=True):
203
+ """Print keys with differnet name or different size when loading models.
204
+
205
+ 1. Print keys with differnet names.
206
+ 2. If strict=False, print the same key but with different tensor size.
207
+ It also ignore these keys with different sizes (not load).
208
+
209
+ Args:
210
+ crt_net (torch model): Current network.
211
+ load_net (dict): Loaded network.
212
+ strict (bool): Whether strictly loaded. Default: True.
213
+ """
214
+ crt_net = self.get_bare_model(crt_net)
215
+ crt_net = crt_net.state_dict()
216
+ crt_net_keys = set(crt_net.keys())
217
+ load_net_keys = set(load_net.keys())
218
+
219
+ if crt_net_keys != load_net_keys:
220
+ logger.warning('Current net - loaded net:')
221
+ for v in sorted(list(crt_net_keys - load_net_keys)):
222
+ logger.warning(f' {v}')
223
+ logger.warning('Loaded net - current net:')
224
+ for v in sorted(list(load_net_keys - crt_net_keys)):
225
+ logger.warning(f' {v}')
226
+
227
+ # check the size for the same keys
228
+ if not strict:
229
+ common_keys = crt_net_keys & load_net_keys
230
+ for k in common_keys:
231
+ if crt_net[k].size() != load_net[k].size():
232
+ logger.warning(f'Size different, ignore [{k}]: crt_net: '
233
+ f'{crt_net[k].shape}; load_net: {load_net[k].shape}')
234
+ load_net[k + '.ignore'] = load_net.pop(k)
235
+
236
+ def load_network(self, net, load_path, strict=True, param_key='params'):
237
+ """Load network.
238
+
239
+ Args:
240
+ load_path (str): The path of networks to be loaded.
241
+ net (nn.Module): Network.
242
+ strict (bool): Whether strictly loaded.
243
+ param_key (str): The parameter key of loaded network. If set to
244
+ None, use the root 'path'.
245
+ Default: 'params'.
246
+ """
247
+ net = self.get_bare_model(net)
248
+ logger.info(f'Loading {net.__class__.__name__} model from {load_path}.')
249
+ load_net = torch.load(load_path, map_location=lambda storage, loc: storage)
250
+ if param_key is not None:
251
+ if param_key not in load_net and 'params' in load_net:
252
+ param_key = 'params'
253
+ logger.info('Loading: params_ema does not exist, use params.')
254
+ load_net = load_net[param_key]
255
+ # remove unnecessary 'module.'
256
+ for k, v in deepcopy(load_net).items():
257
+ if k.startswith('module.'):
258
+ load_net[k[7:]] = v
259
+ load_net.pop(k)
260
+ self._print_different_keys_loading(net, load_net, strict)
261
+ net.load_state_dict(load_net, strict=strict)
262
+
263
+ @master_only
264
+ def save_training_state(self, epoch, current_iter):
265
+ """Save training states during training, which will be used for
266
+ resuming.
267
+
268
+ Args:
269
+ epoch (int): Current epoch.
270
+ current_iter (int): Current iteration.
271
+ """
272
+ if current_iter != -1:
273
+ state = {'epoch': epoch, 'iter': current_iter, 'optimizers': [], 'schedulers': []}
274
+ for o in self.optimizers:
275
+ state['optimizers'].append(o.state_dict())
276
+ for s in self.schedulers:
277
+ state['schedulers'].append(s.state_dict())
278
+ save_filename = f'{current_iter}.state'
279
+ save_path = os.path.join(self.opt['path']['training_states'], save_filename)
280
+ torch.save(state, save_path)
281
+
282
+ def resume_training(self, resume_state):
283
+ """Reload the optimizers and schedulers for resumed training.
284
+
285
+ Args:
286
+ resume_state (dict): Resume state.
287
+ """
288
+ resume_optimizers = resume_state['optimizers']
289
+ resume_schedulers = resume_state['schedulers']
290
+ assert len(resume_optimizers) == len(self.optimizers), 'Wrong lengths of optimizers'
291
+ assert len(resume_schedulers) == len(self.schedulers), 'Wrong lengths of schedulers'
292
+ for i, o in enumerate(resume_optimizers):
293
+ self.optimizers[i].load_state_dict(o)
294
+ for i, s in enumerate(resume_schedulers):
295
+ self.schedulers[i].load_state_dict(s)
296
+
297
+ def reduce_loss_dict(self, loss_dict):
298
+ """reduce loss dict.
299
+
300
+ In distributed training, it averages the losses among different GPUs .
301
+
302
+ Args:
303
+ loss_dict (OrderedDict): Loss dict.
304
+ """
305
+ with torch.no_grad():
306
+ if self.opt['dist']:
307
+ keys = []
308
+ losses = []
309
+ for name, value in loss_dict.items():
310
+ keys.append(name)
311
+ losses.append(value)
312
+ losses = torch.stack(losses, 0)
313
+ torch.distributed.reduce(losses, dst=0)
314
+ if self.opt['rank'] == 0:
315
+ losses /= self.opt['world_size']
316
+ loss_dict = {key: loss for key, loss in zip(keys, losses)}
317
+
318
+ log_dict = OrderedDict()
319
+ for name, value in loss_dict.items():
320
+ log_dict[name] = value.mean().item()
321
+
322
+ return log_dict
basicsr/models/codeformer_idx_model.py ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from collections import OrderedDict
3
+ from os import path as osp
4
+ from tqdm import tqdm
5
+
6
+ from basicsr.archs import build_network
7
+ from basicsr.metrics import calculate_metric
8
+ from basicsr.utils import get_root_logger, imwrite, tensor2img
9
+ from basicsr.utils.registry import MODEL_REGISTRY
10
+ import torch.nn.functional as F
11
+ from .sr_model import SRModel
12
+
13
+
14
+ @MODEL_REGISTRY.register()
15
+ class CodeFormerIdxModel(SRModel):
16
+ def feed_data(self, data):
17
+ self.gt = data['gt'].to(self.device)
18
+ self.input = data['in'].to(self.device)
19
+ self.b = self.gt.shape[0]
20
+
21
+ if 'latent_gt' in data:
22
+ self.idx_gt = data['latent_gt'].to(self.device)
23
+ self.idx_gt = self.idx_gt.view(self.b, -1)
24
+ else:
25
+ self.idx_gt = None
26
+
27
+ def init_training_settings(self):
28
+ logger = get_root_logger()
29
+ train_opt = self.opt['train']
30
+
31
+ self.ema_decay = train_opt.get('ema_decay', 0)
32
+ if self.ema_decay > 0:
33
+ logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
34
+ # define network net_g with Exponential Moving Average (EMA)
35
+ # net_g_ema is used only for testing on one GPU and saving
36
+ # There is no need to wrap with DistributedDataParallel
37
+ self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
38
+ # load pretrained model
39
+ load_path = self.opt['path'].get('pretrain_network_g', None)
40
+ if load_path is not None:
41
+ self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
42
+ else:
43
+ self.model_ema(0) # copy net_g weight
44
+ self.net_g_ema.eval()
45
+
46
+ if self.opt.get('network_vqgan', None) is not None and self.opt['datasets'].get('latent_gt_path') is None:
47
+ self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device)
48
+ self.hq_vqgan_fix.eval()
49
+ self.generate_idx_gt = True
50
+ for param in self.hq_vqgan_fix.parameters():
51
+ param.requires_grad = False
52
+ else:
53
+ self.generate_idx_gt = False
54
+
55
+ self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True)
56
+ self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
57
+ self.cross_entropy_loss = train_opt.get('cross_entropy_loss', True)
58
+ self.entropy_loss_weight = train_opt.get('entropy_loss_weight', 0.5)
59
+
60
+ self.net_g.train()
61
+
62
+ # set up optimizers and schedulers
63
+ self.setup_optimizers()
64
+ self.setup_schedulers()
65
+
66
+
67
+ def setup_optimizers(self):
68
+ train_opt = self.opt['train']
69
+ # optimizer g
70
+ optim_params_g = []
71
+ for k, v in self.net_g.named_parameters():
72
+ if v.requires_grad:
73
+ optim_params_g.append(v)
74
+ else:
75
+ logger = get_root_logger()
76
+ logger.warning(f'Params {k} will not be optimized.')
77
+ optim_type = train_opt['optim_g'].pop('type')
78
+ self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])
79
+ self.optimizers.append(self.optimizer_g)
80
+
81
+
82
+ def optimize_parameters(self, current_iter):
83
+ logger = get_root_logger()
84
+ # optimize net_g
85
+ self.optimizer_g.zero_grad()
86
+
87
+ if self.generate_idx_gt:
88
+ x = self.hq_vqgan_fix.encoder(self.gt)
89
+ _, _, quant_stats = self.hq_vqgan_fix.quantize(x)
90
+ min_encoding_indices = quant_stats['min_encoding_indices']
91
+ self.idx_gt = min_encoding_indices.view(self.b, -1)
92
+
93
+ if self.hq_feat_loss:
94
+ # quant_feats
95
+ quant_feat_gt = self.net_g.module.quantize.get_codebook_feat(self.idx_gt, shape=[self.b,16,16,256])
96
+
97
+ logits, lq_feat = self.net_g(self.input, w=0, code_only=True)
98
+
99
+ l_g_total = 0
100
+ loss_dict = OrderedDict()
101
+ # hq_feat_loss
102
+ if self.hq_feat_loss: # codebook loss
103
+ l_feat_encoder = torch.mean((quant_feat_gt.detach()-lq_feat)**2) * self.feat_loss_weight
104
+ l_g_total += l_feat_encoder
105
+ loss_dict['l_feat_encoder'] = l_feat_encoder
106
+
107
+ # cross_entropy_loss
108
+ if self.cross_entropy_loss:
109
+ # b(hw)n -> bn(hw)
110
+ cross_entropy_loss = F.cross_entropy(logits.permute(0, 2, 1), self.idx_gt) * self.entropy_loss_weight
111
+ l_g_total += cross_entropy_loss
112
+ loss_dict['cross_entropy_loss'] = cross_entropy_loss
113
+
114
+ l_g_total.backward()
115
+ self.optimizer_g.step()
116
+
117
+ if self.ema_decay > 0:
118
+ self.model_ema(decay=self.ema_decay)
119
+
120
+ self.log_dict = self.reduce_loss_dict(loss_dict)
121
+
122
+
123
+ def test(self):
124
+ with torch.no_grad():
125
+ if hasattr(self, 'net_g_ema'):
126
+ self.net_g_ema.eval()
127
+ self.output, _, _ = self.net_g_ema(self.input, w=0)
128
+ else:
129
+ logger = get_root_logger()
130
+ logger.warning('Do not have self.net_g_ema, use self.net_g.')
131
+ self.net_g.eval()
132
+ self.output, _, _ = self.net_g(self.input, w=0)
133
+ self.net_g.train()
134
+
135
+
136
+ def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
137
+ if self.opt['rank'] == 0:
138
+ self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
139
+
140
+
141
+ def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
142
+ dataset_name = dataloader.dataset.opt['name']
143
+ with_metrics = self.opt['val'].get('metrics') is not None
144
+ if with_metrics:
145
+ self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
146
+ pbar = tqdm(total=len(dataloader), unit='image')
147
+
148
+ for idx, val_data in enumerate(dataloader):
149
+ img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
150
+ self.feed_data(val_data)
151
+ self.test()
152
+
153
+ visuals = self.get_current_visuals()
154
+ sr_img = tensor2img([visuals['result']])
155
+ if 'gt' in visuals:
156
+ gt_img = tensor2img([visuals['gt']])
157
+ del self.gt
158
+
159
+ # tentative for out of GPU memory
160
+ del self.lq
161
+ del self.output
162
+ torch.cuda.empty_cache()
163
+
164
+ if save_img:
165
+ if self.opt['is_train']:
166
+ save_img_path = osp.join(self.opt['path']['visualization'], img_name,
167
+ f'{img_name}_{current_iter}.png')
168
+ else:
169
+ if self.opt['val']['suffix']:
170
+ save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
171
+ f'{img_name}_{self.opt["val"]["suffix"]}.png')
172
+ else:
173
+ save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
174
+ f'{img_name}_{self.opt["name"]}.png')
175
+ imwrite(sr_img, save_img_path)
176
+
177
+ if with_metrics:
178
+ # calculate metrics
179
+ for name, opt_ in self.opt['val']['metrics'].items():
180
+ metric_data = dict(img1=sr_img, img2=gt_img)
181
+ self.metric_results[name] += calculate_metric(metric_data, opt_)
182
+ pbar.update(1)
183
+ pbar.set_description(f'Test {img_name}')
184
+ pbar.close()
185
+
186
+ if with_metrics:
187
+ for metric in self.metric_results.keys():
188
+ self.metric_results[metric] /= (idx + 1)
189
+
190
+ self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
191
+
192
+
193
+ def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
194
+ log_str = f'Validation {dataset_name}\n'
195
+ for metric, value in self.metric_results.items():
196
+ log_str += f'\t # {metric}: {value:.4f}\n'
197
+ logger = get_root_logger()
198
+ logger.info(log_str)
199
+ if tb_logger:
200
+ for metric, value in self.metric_results.items():
201
+ tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
202
+
203
+
204
+ def get_current_visuals(self):
205
+ out_dict = OrderedDict()
206
+ out_dict['gt'] = self.gt.detach().cpu()
207
+ out_dict['result'] = self.output.detach().cpu()
208
+ return out_dict
209
+
210
+
211
+ def save(self, epoch, current_iter):
212
+ if self.ema_decay > 0:
213
+ self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
214
+ else:
215
+ self.save_network(self.net_g, 'net_g', current_iter)
216
+ self.save_training_state(epoch, current_iter)
basicsr/models/codeformer_joint_model.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from collections import OrderedDict
3
+ from os import path as osp
4
+ from tqdm import tqdm
5
+
6
+
7
+ from basicsr.archs import build_network
8
+ from basicsr.losses import build_loss
9
+ from basicsr.metrics import calculate_metric
10
+ from basicsr.utils import get_root_logger, imwrite, tensor2img
11
+ from basicsr.utils.registry import MODEL_REGISTRY
12
+ import torch.nn.functional as F
13
+ from .sr_model import SRModel
14
+
15
+
16
+ @MODEL_REGISTRY.register()
17
+ class CodeFormerJointModel(SRModel):
18
+ def feed_data(self, data):
19
+ self.gt = data['gt'].to(self.device)
20
+ self.input = data['in'].to(self.device)
21
+ self.input_large_de = data['in_large_de'].to(self.device)
22
+ self.b = self.gt.shape[0]
23
+
24
+ if 'latent_gt' in data:
25
+ self.idx_gt = data['latent_gt'].to(self.device)
26
+ self.idx_gt = self.idx_gt.view(self.b, -1)
27
+ else:
28
+ self.idx_gt = None
29
+
30
+ def init_training_settings(self):
31
+ logger = get_root_logger()
32
+ train_opt = self.opt['train']
33
+
34
+ self.ema_decay = train_opt.get('ema_decay', 0)
35
+ if self.ema_decay > 0:
36
+ logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
37
+ # define network net_g with Exponential Moving Average (EMA)
38
+ # net_g_ema is used only for testing on one GPU and saving
39
+ # There is no need to wrap with DistributedDataParallel
40
+ self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
41
+ # load pretrained model
42
+ load_path = self.opt['path'].get('pretrain_network_g', None)
43
+ if load_path is not None:
44
+ self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
45
+ else:
46
+ self.model_ema(0) # copy net_g weight
47
+ self.net_g_ema.eval()
48
+
49
+ if self.opt.get('network_vqgan', None) is not None and self.opt['datasets'].get('latent_gt_path') is None:
50
+ self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device)
51
+ self.hq_vqgan_fix.eval()
52
+ self.generate_idx_gt = True
53
+ for param in self.hq_vqgan_fix.parameters():
54
+ param.requires_grad = False
55
+ else:
56
+ self.generate_idx_gt = False
57
+
58
+ self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True)
59
+ self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
60
+ self.cross_entropy_loss = train_opt.get('cross_entropy_loss', True)
61
+ self.entropy_loss_weight = train_opt.get('entropy_loss_weight', 0.5)
62
+ self.scale_adaptive_gan_weight = train_opt.get('scale_adaptive_gan_weight', 0.8)
63
+
64
+ # define network net_d
65
+ self.net_d = build_network(self.opt['network_d'])
66
+ self.net_d = self.model_to_device(self.net_d)
67
+ self.print_network(self.net_d)
68
+
69
+ # load pretrained models
70
+ load_path = self.opt['path'].get('pretrain_network_d', None)
71
+ if load_path is not None:
72
+ self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))
73
+
74
+ self.net_g.train()
75
+ self.net_d.train()
76
+
77
+ # define losses
78
+ if train_opt.get('pixel_opt'):
79
+ self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
80
+ else:
81
+ self.cri_pix = None
82
+
83
+ if train_opt.get('perceptual_opt'):
84
+ self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
85
+ else:
86
+ self.cri_perceptual = None
87
+
88
+ if train_opt.get('gan_opt'):
89
+ self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
90
+
91
+
92
+ self.fix_generator = train_opt.get('fix_generator', True)
93
+ logger.info(f'fix_generator: {self.fix_generator}')
94
+
95
+ self.net_g_start_iter = train_opt.get('net_g_start_iter', 0)
96
+ self.net_d_iters = train_opt.get('net_d_iters', 1)
97
+ self.net_d_start_iter = train_opt.get('net_d_start_iter', 0)
98
+
99
+ # set up optimizers and schedulers
100
+ self.setup_optimizers()
101
+ self.setup_schedulers()
102
+
103
+ def calculate_adaptive_weight(self, recon_loss, g_loss, last_layer, disc_weight_max):
104
+ recon_grads = torch.autograd.grad(recon_loss, last_layer, retain_graph=True)[0]
105
+ g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
106
+
107
+ d_weight = torch.norm(recon_grads) / (torch.norm(g_grads) + 1e-4)
108
+ d_weight = torch.clamp(d_weight, 0.0, disc_weight_max).detach()
109
+ return d_weight
110
+
111
+ def setup_optimizers(self):
112
+ train_opt = self.opt['train']
113
+ # optimizer g
114
+ optim_params_g = []
115
+ for k, v in self.net_g.named_parameters():
116
+ if v.requires_grad:
117
+ optim_params_g.append(v)
118
+ else:
119
+ logger = get_root_logger()
120
+ logger.warning(f'Params {k} will not be optimized.')
121
+ optim_type = train_opt['optim_g'].pop('type')
122
+ self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])
123
+ self.optimizers.append(self.optimizer_g)
124
+ # optimizer d
125
+ optim_type = train_opt['optim_d'].pop('type')
126
+ self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
127
+ self.optimizers.append(self.optimizer_d)
128
+
129
+ def gray_resize_for_identity(self, out, size=128):
130
+ out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :])
131
+ out_gray = out_gray.unsqueeze(1)
132
+ out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False)
133
+ return out_gray
134
+
135
+ def optimize_parameters(self, current_iter):
136
+ logger = get_root_logger()
137
+ # optimize net_g
138
+ for p in self.net_d.parameters():
139
+ p.requires_grad = False
140
+
141
+ self.optimizer_g.zero_grad()
142
+
143
+ if self.generate_idx_gt:
144
+ x = self.hq_vqgan_fix.encoder(self.gt)
145
+ output, _, quant_stats = self.hq_vqgan_fix.quantize(x)
146
+ min_encoding_indices = quant_stats['min_encoding_indices']
147
+ self.idx_gt = min_encoding_indices.view(self.b, -1)
148
+
149
+ if current_iter <= 40000: # small degradation
150
+ small_per_n = 1
151
+ w = 1
152
+ elif current_iter <= 80000: # small degradation
153
+ small_per_n = 1
154
+ w = 1.3
155
+ elif current_iter <= 120000: # large degradation
156
+ small_per_n = 120000
157
+ w = 0
158
+ else: # mixed degradation
159
+ small_per_n = 15
160
+ w = 1.3
161
+
162
+ if current_iter % small_per_n == 0:
163
+ self.output, logits, lq_feat = self.net_g(self.input, w=w, detach_16=True)
164
+ large_de = False
165
+ else:
166
+ logits, lq_feat = self.net_g(self.input_large_de, code_only=True)
167
+ large_de = True
168
+
169
+ if self.hq_feat_loss:
170
+ # quant_feats
171
+ quant_feat_gt = self.net_g.module.quantize.get_codebook_feat(self.idx_gt, shape=[self.b,16,16,256])
172
+
173
+ l_g_total = 0
174
+ loss_dict = OrderedDict()
175
+ if current_iter % self.net_d_iters == 0 and current_iter > self.net_g_start_iter:
176
+ # hq_feat_loss
177
+ if not 'transformer' in self.opt['network_g']['fix_modules']:
178
+ if self.hq_feat_loss: # codebook loss
179
+ l_feat_encoder = torch.mean((quant_feat_gt.detach()-lq_feat)**2) * self.feat_loss_weight
180
+ l_g_total += l_feat_encoder
181
+ loss_dict['l_feat_encoder'] = l_feat_encoder
182
+
183
+ # cross_entropy_loss
184
+ if self.cross_entropy_loss:
185
+ # b(hw)n -> bn(hw)
186
+ cross_entropy_loss = F.cross_entropy(logits.permute(0, 2, 1), self.idx_gt) * self.entropy_loss_weight
187
+ l_g_total += cross_entropy_loss
188
+ loss_dict['cross_entropy_loss'] = cross_entropy_loss
189
+
190
+ # pixel loss
191
+ if not large_de: # when large degradation don't need image-level loss
192
+ if self.cri_pix:
193
+ l_g_pix = self.cri_pix(self.output, self.gt)
194
+ l_g_total += l_g_pix
195
+ loss_dict['l_g_pix'] = l_g_pix
196
+
197
+ # perceptual loss
198
+ if self.cri_perceptual:
199
+ l_g_percep = self.cri_perceptual(self.output, self.gt)
200
+ l_g_total += l_g_percep
201
+ loss_dict['l_g_percep'] = l_g_percep
202
+
203
+ # gan loss
204
+ if current_iter > self.net_d_start_iter:
205
+ fake_g_pred = self.net_d(self.output)
206
+ l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
207
+ recon_loss = l_g_pix + l_g_percep
208
+ if not self.fix_generator:
209
+ last_layer = self.net_g.module.generator.blocks[-1].weight
210
+ d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
211
+ else:
212
+ largest_fuse_size = self.opt['network_g']['connect_list'][-1]
213
+ last_layer = self.net_g.module.fuse_convs_dict[largest_fuse_size].shift[-1].weight
214
+ d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
215
+
216
+ d_weight *= self.scale_adaptive_gan_weight # 0.8
217
+ loss_dict['d_weight'] = d_weight
218
+ l_g_total += d_weight * l_g_gan
219
+ loss_dict['l_g_gan'] = d_weight * l_g_gan
220
+
221
+ l_g_total.backward()
222
+ self.optimizer_g.step()
223
+
224
+ if self.ema_decay > 0:
225
+ self.model_ema(decay=self.ema_decay)
226
+
227
+ # optimize net_d
228
+ if not large_de:
229
+ if current_iter > self.net_d_start_iter:
230
+ for p in self.net_d.parameters():
231
+ p.requires_grad = True
232
+
233
+ self.optimizer_d.zero_grad()
234
+ # real
235
+ real_d_pred = self.net_d(self.gt)
236
+ l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
237
+ loss_dict['l_d_real'] = l_d_real
238
+ loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
239
+ l_d_real.backward()
240
+ # fake
241
+ fake_d_pred = self.net_d(self.output.detach())
242
+ l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
243
+ loss_dict['l_d_fake'] = l_d_fake
244
+ loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
245
+ l_d_fake.backward()
246
+
247
+ self.optimizer_d.step()
248
+
249
+ self.log_dict = self.reduce_loss_dict(loss_dict)
250
+
251
+
252
+ def test(self):
253
+ with torch.no_grad():
254
+ if hasattr(self, 'net_g_ema'):
255
+ self.net_g_ema.eval()
256
+ self.output, _, _ = self.net_g_ema(self.input, w=1)
257
+ else:
258
+ logger = get_root_logger()
259
+ logger.warning('Do not have self.net_g_ema, use self.net_g.')
260
+ self.net_g.eval()
261
+ self.output, _, _ = self.net_g(self.input, w=1)
262
+ self.net_g.train()
263
+
264
+
265
+ def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
266
+ if self.opt['rank'] == 0:
267
+ self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
268
+
269
+
270
+ def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
271
+ dataset_name = dataloader.dataset.opt['name']
272
+ with_metrics = self.opt['val'].get('metrics') is not None
273
+ if with_metrics:
274
+ self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
275
+ pbar = tqdm(total=len(dataloader), unit='image')
276
+
277
+ for idx, val_data in enumerate(dataloader):
278
+ img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
279
+ self.feed_data(val_data)
280
+ self.test()
281
+
282
+ visuals = self.get_current_visuals()
283
+ sr_img = tensor2img([visuals['result']])
284
+ if 'gt' in visuals:
285
+ gt_img = tensor2img([visuals['gt']])
286
+ del self.gt
287
+
288
+ # tentative for out of GPU memory
289
+ del self.lq
290
+ del self.output
291
+ torch.cuda.empty_cache()
292
+
293
+ if save_img:
294
+ if self.opt['is_train']:
295
+ save_img_path = osp.join(self.opt['path']['visualization'], img_name,
296
+ f'{img_name}_{current_iter}.png')
297
+ else:
298
+ if self.opt['val']['suffix']:
299
+ save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
300
+ f'{img_name}_{self.opt["val"]["suffix"]}.png')
301
+ else:
302
+ save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
303
+ f'{img_name}_{self.opt["name"]}.png')
304
+ imwrite(sr_img, save_img_path)
305
+
306
+ if with_metrics:
307
+ # calculate metrics
308
+ for name, opt_ in self.opt['val']['metrics'].items():
309
+ metric_data = dict(img1=sr_img, img2=gt_img)
310
+ self.metric_results[name] += calculate_metric(metric_data, opt_)
311
+ pbar.update(1)
312
+ pbar.set_description(f'Test {img_name}')
313
+ pbar.close()
314
+
315
+ if with_metrics:
316
+ for metric in self.metric_results.keys():
317
+ self.metric_results[metric] /= (idx + 1)
318
+
319
+ self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
320
+
321
+
322
+ def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
323
+ log_str = f'Validation {dataset_name}\n'
324
+ for metric, value in self.metric_results.items():
325
+ log_str += f'\t # {metric}: {value:.4f}\n'
326
+ logger = get_root_logger()
327
+ logger.info(log_str)
328
+ if tb_logger:
329
+ for metric, value in self.metric_results.items():
330
+ tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
331
+
332
+
333
+ def get_current_visuals(self):
334
+ out_dict = OrderedDict()
335
+ out_dict['gt'] = self.gt.detach().cpu()
336
+ out_dict['result'] = self.output.detach().cpu()
337
+ return out_dict
338
+
339
+
340
+ def save(self, epoch, current_iter):
341
+ if self.ema_decay > 0:
342
+ self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
343
+ else:
344
+ self.save_network(self.net_g, 'net_g', current_iter)
345
+ self.save_network(self.net_d, 'net_d', current_iter)
346
+ self.save_training_state(epoch, current_iter)
basicsr/models/codeformer_model.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from collections import OrderedDict
3
+ from os import path as osp
4
+ from tqdm import tqdm
5
+
6
+ from basicsr.archs import build_network
7
+ from basicsr.losses import build_loss
8
+ from basicsr.metrics import calculate_metric
9
+ from basicsr.utils import get_root_logger, imwrite, tensor2img
10
+ from basicsr.utils.registry import MODEL_REGISTRY
11
+ import torch.nn.functional as F
12
+ from .sr_model import SRModel
13
+
14
+
15
+ @MODEL_REGISTRY.register()
16
+ class CodeFormerModel(SRModel):
17
+ def feed_data(self, data):
18
+ self.gt = data['gt'].to(self.device)
19
+ self.input = data['in'].to(self.device)
20
+ self.b = self.gt.shape[0]
21
+
22
+ if 'latent_gt' in data:
23
+ self.idx_gt = data['latent_gt'].to(self.device)
24
+ self.idx_gt = self.idx_gt.view(self.b, -1)
25
+ else:
26
+ self.idx_gt = None
27
+
28
+ def init_training_settings(self):
29
+ logger = get_root_logger()
30
+ train_opt = self.opt['train']
31
+
32
+ self.ema_decay = train_opt.get('ema_decay', 0)
33
+ if self.ema_decay > 0:
34
+ logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
35
+ # define network net_g with Exponential Moving Average (EMA)
36
+ # net_g_ema is used only for testing on one GPU and saving
37
+ # There is no need to wrap with DistributedDataParallel
38
+ self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
39
+ # load pretrained model
40
+ load_path = self.opt['path'].get('pretrain_network_g', None)
41
+ if load_path is not None:
42
+ self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
43
+ else:
44
+ self.model_ema(0) # copy net_g weight
45
+ self.net_g_ema.eval()
46
+
47
+ if self.opt.get('network_vqgan', None) is not None and self.opt['datasets'].get('latent_gt_path') is None:
48
+ self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device)
49
+ self.hq_vqgan_fix.eval()
50
+ self.generate_idx_gt = True
51
+ for param in self.hq_vqgan_fix.parameters():
52
+ param.requires_grad = False
53
+ else:
54
+ self.generate_idx_gt = False
55
+
56
+ self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True)
57
+ self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
58
+ self.cross_entropy_loss = train_opt.get('cross_entropy_loss', True)
59
+ self.entropy_loss_weight = train_opt.get('entropy_loss_weight', 0.5)
60
+ self.fidelity_weight = train_opt.get('fidelity_weight', 1.0)
61
+ self.scale_adaptive_gan_weight = train_opt.get('scale_adaptive_gan_weight', 0.8)
62
+
63
+
64
+ self.net_g.train()
65
+ # define network net_d
66
+ if self.fidelity_weight > 0:
67
+ self.net_d = build_network(self.opt['network_d'])
68
+ self.net_d = self.model_to_device(self.net_d)
69
+ self.print_network(self.net_d)
70
+
71
+ # load pretrained models
72
+ load_path = self.opt['path'].get('pretrain_network_d', None)
73
+ if load_path is not None:
74
+ self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))
75
+
76
+ self.net_d.train()
77
+
78
+ # define losses
79
+ if train_opt.get('pixel_opt'):
80
+ self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
81
+ else:
82
+ self.cri_pix = None
83
+
84
+ if train_opt.get('perceptual_opt'):
85
+ self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
86
+ else:
87
+ self.cri_perceptual = None
88
+
89
+ if train_opt.get('gan_opt'):
90
+ self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
91
+
92
+
93
+ self.fix_generator = train_opt.get('fix_generator', True)
94
+ logger.info(f'fix_generator: {self.fix_generator}')
95
+
96
+ self.net_g_start_iter = train_opt.get('net_g_start_iter', 0)
97
+ self.net_d_iters = train_opt.get('net_d_iters', 1)
98
+ self.net_d_start_iter = train_opt.get('net_d_start_iter', 0)
99
+
100
+ # set up optimizers and schedulers
101
+ self.setup_optimizers()
102
+ self.setup_schedulers()
103
+
104
+ def calculate_adaptive_weight(self, recon_loss, g_loss, last_layer, disc_weight_max):
105
+ recon_grads = torch.autograd.grad(recon_loss, last_layer, retain_graph=True)[0]
106
+ g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
107
+
108
+ d_weight = torch.norm(recon_grads) / (torch.norm(g_grads) + 1e-4)
109
+ d_weight = torch.clamp(d_weight, 0.0, disc_weight_max).detach()
110
+ return d_weight
111
+
112
+ def setup_optimizers(self):
113
+ train_opt = self.opt['train']
114
+ # optimizer g
115
+ optim_params_g = []
116
+ for k, v in self.net_g.named_parameters():
117
+ if v.requires_grad:
118
+ optim_params_g.append(v)
119
+ else:
120
+ logger = get_root_logger()
121
+ logger.warning(f'Params {k} will not be optimized.')
122
+ optim_type = train_opt['optim_g'].pop('type')
123
+ self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])
124
+ self.optimizers.append(self.optimizer_g)
125
+ # optimizer d
126
+ if self.fidelity_weight > 0:
127
+ optim_type = train_opt['optim_d'].pop('type')
128
+ self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
129
+ self.optimizers.append(self.optimizer_d)
130
+
131
+ def gray_resize_for_identity(self, out, size=128):
132
+ out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :])
133
+ out_gray = out_gray.unsqueeze(1)
134
+ out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False)
135
+ return out_gray
136
+
137
+ def optimize_parameters(self, current_iter):
138
+ logger = get_root_logger()
139
+ # optimize net_g
140
+ for p in self.net_d.parameters():
141
+ p.requires_grad = False
142
+
143
+ self.optimizer_g.zero_grad()
144
+
145
+ if self.generate_idx_gt:
146
+ x = self.hq_vqgan_fix.encoder(self.gt)
147
+ output, _, quant_stats = self.hq_vqgan_fix.quantize(x)
148
+ min_encoding_indices = quant_stats['min_encoding_indices']
149
+ self.idx_gt = min_encoding_indices.view(self.b, -1)
150
+
151
+ if self.fidelity_weight > 0:
152
+ self.output, logits, lq_feat = self.net_g(self.input, w=self.fidelity_weight, detach_16=True)
153
+ else:
154
+ logits, lq_feat = self.net_g(self.input, w=0, code_only=True)
155
+
156
+ if self.hq_feat_loss:
157
+ # quant_feats
158
+ quant_feat_gt = self.net_g.module.quantize.get_codebook_feat(self.idx_gt, shape=[self.b,16,16,256])
159
+
160
+ l_g_total = 0
161
+ loss_dict = OrderedDict()
162
+ if current_iter % self.net_d_iters == 0 and current_iter > self.net_g_start_iter:
163
+ # hq_feat_loss
164
+ if self.hq_feat_loss: # codebook loss
165
+ l_feat_encoder = torch.mean((quant_feat_gt.detach()-lq_feat)**2) * self.feat_loss_weight
166
+ l_g_total += l_feat_encoder
167
+ loss_dict['l_feat_encoder'] = l_feat_encoder
168
+
169
+ # cross_entropy_loss
170
+ if self.cross_entropy_loss:
171
+ # b(hw)n -> bn(hw)
172
+ cross_entropy_loss = F.cross_entropy(logits.permute(0, 2, 1), self.idx_gt) * self.entropy_loss_weight
173
+ l_g_total += cross_entropy_loss
174
+ loss_dict['cross_entropy_loss'] = cross_entropy_loss
175
+
176
+ if self.fidelity_weight > 0: # when fidelity_weight == 0 don't need image-level loss
177
+ # pixel loss
178
+ if self.cri_pix:
179
+ l_g_pix = self.cri_pix(self.output, self.gt)
180
+ l_g_total += l_g_pix
181
+ loss_dict['l_g_pix'] = l_g_pix
182
+
183
+ # perceptual loss
184
+ if self.cri_perceptual:
185
+ l_g_percep = self.cri_perceptual(self.output, self.gt)
186
+ l_g_total += l_g_percep
187
+ loss_dict['l_g_percep'] = l_g_percep
188
+
189
+ # gan loss
190
+ if current_iter > self.net_d_start_iter:
191
+ fake_g_pred = self.net_d(self.output)
192
+ l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
193
+ recon_loss = l_g_pix + l_g_percep
194
+ if not self.fix_generator:
195
+ last_layer = self.net_g.module.generator.blocks[-1].weight
196
+ d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
197
+ else:
198
+ largest_fuse_size = self.opt['network_g']['connect_list'][-1]
199
+ last_layer = self.net_g.module.fuse_convs_dict[largest_fuse_size].shift[-1].weight
200
+ d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
201
+
202
+ d_weight *= self.scale_adaptive_gan_weight # 0.8
203
+ loss_dict['d_weight'] = d_weight
204
+ l_g_total += d_weight * l_g_gan
205
+ loss_dict['l_g_gan'] = d_weight * l_g_gan
206
+
207
+ l_g_total.backward()
208
+ self.optimizer_g.step()
209
+
210
+ if self.ema_decay > 0:
211
+ self.model_ema(decay=self.ema_decay)
212
+
213
+ # optimize net_d
214
+ if current_iter > self.net_d_start_iter and self.fidelity_weight > 0:
215
+ for p in self.net_d.parameters():
216
+ p.requires_grad = True
217
+
218
+ self.optimizer_d.zero_grad()
219
+ # real
220
+ real_d_pred = self.net_d(self.gt)
221
+ l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
222
+ loss_dict['l_d_real'] = l_d_real
223
+ loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
224
+ l_d_real.backward()
225
+ # fake
226
+ fake_d_pred = self.net_d(self.output.detach())
227
+ l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
228
+ loss_dict['l_d_fake'] = l_d_fake
229
+ loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
230
+ l_d_fake.backward()
231
+
232
+ self.optimizer_d.step()
233
+
234
+ self.log_dict = self.reduce_loss_dict(loss_dict)
235
+
236
+
237
+ def test(self):
238
+ with torch.no_grad():
239
+ if hasattr(self, 'net_g_ema'):
240
+ self.net_g_ema.eval()
241
+ self.output, _, _ = self.net_g_ema(self.input, w=self.fidelity_weight)
242
+ else:
243
+ logger = get_root_logger()
244
+ logger.warning('Do not have self.net_g_ema, use self.net_g.')
245
+ self.net_g.eval()
246
+ self.output, _, _ = self.net_g(self.input, w=self.fidelity_weight)
247
+ self.net_g.train()
248
+
249
+
250
+ def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
251
+ if self.opt['rank'] == 0:
252
+ self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
253
+
254
+
255
+ def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
256
+ dataset_name = dataloader.dataset.opt['name']
257
+ with_metrics = self.opt['val'].get('metrics') is not None
258
+ if with_metrics:
259
+ self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
260
+ pbar = tqdm(total=len(dataloader), unit='image')
261
+
262
+ for idx, val_data in enumerate(dataloader):
263
+ img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
264
+ self.feed_data(val_data)
265
+ self.test()
266
+
267
+ visuals = self.get_current_visuals()
268
+ sr_img = tensor2img([visuals['result']])
269
+ if 'gt' in visuals:
270
+ gt_img = tensor2img([visuals['gt']])
271
+ del self.gt
272
+
273
+ # tentative for out of GPU memory
274
+ del self.lq
275
+ del self.output
276
+ torch.cuda.empty_cache()
277
+
278
+ if save_img:
279
+ if self.opt['is_train']:
280
+ save_img_path = osp.join(self.opt['path']['visualization'], img_name,
281
+ f'{img_name}_{current_iter}.png')
282
+ else:
283
+ if self.opt['val']['suffix']:
284
+ save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
285
+ f'{img_name}_{self.opt["val"]["suffix"]}.png')
286
+ else:
287
+ save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
288
+ f'{img_name}_{self.opt["name"]}.png')
289
+ imwrite(sr_img, save_img_path)
290
+
291
+ if with_metrics:
292
+ # calculate metrics
293
+ for name, opt_ in self.opt['val']['metrics'].items():
294
+ metric_data = dict(img1=sr_img, img2=gt_img)
295
+ self.metric_results[name] += calculate_metric(metric_data, opt_)
296
+ pbar.update(1)
297
+ pbar.set_description(f'Test {img_name}')
298
+ pbar.close()
299
+
300
+ if with_metrics:
301
+ for metric in self.metric_results.keys():
302
+ self.metric_results[metric] /= (idx + 1)
303
+
304
+ self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
305
+
306
+
307
+ def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
308
+ log_str = f'Validation {dataset_name}\n'
309
+ for metric, value in self.metric_results.items():
310
+ log_str += f'\t # {metric}: {value:.4f}\n'
311
+ logger = get_root_logger()
312
+ logger.info(log_str)
313
+ if tb_logger:
314
+ for metric, value in self.metric_results.items():
315
+ tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
316
+
317
+
318
+ def get_current_visuals(self):
319
+ out_dict = OrderedDict()
320
+ out_dict['gt'] = self.gt.detach().cpu()
321
+ out_dict['result'] = self.output.detach().cpu()
322
+ return out_dict
323
+
324
+
325
+ def save(self, epoch, current_iter):
326
+ if self.ema_decay > 0:
327
+ self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
328
+ else:
329
+ self.save_network(self.net_g, 'net_g', current_iter)
330
+ if self.fidelity_weight > 0:
331
+ self.save_network(self.net_d, 'net_d', current_iter)
332
+ self.save_training_state(epoch, current_iter)
basicsr/models/sr_model.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from collections import OrderedDict
3
+ from os import path as osp
4
+ from tqdm import tqdm
5
+
6
+ from basicsr.archs import build_network
7
+ from basicsr.losses import build_loss
8
+ from basicsr.metrics import calculate_metric
9
+ from basicsr.utils import get_root_logger, imwrite, tensor2img
10
+ from basicsr.utils.registry import MODEL_REGISTRY
11
+ from .base_model import BaseModel
12
+
13
+ @MODEL_REGISTRY.register()
14
+ class SRModel(BaseModel):
15
+ """Base SR model for single image super-resolution."""
16
+
17
+ def __init__(self, opt):
18
+ super(SRModel, self).__init__(opt)
19
+
20
+ # define network
21
+ self.net_g = build_network(opt['network_g'])
22
+ self.net_g = self.model_to_device(self.net_g)
23
+ self.print_network(self.net_g)
24
+
25
+ # load pretrained models
26
+ load_path = self.opt['path'].get('pretrain_network_g', None)
27
+ if load_path is not None:
28
+ param_key = self.opt['path'].get('param_key_g', 'params')
29
+ self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)
30
+
31
+ if self.is_train:
32
+ self.init_training_settings()
33
+
34
+ def init_training_settings(self):
35
+ self.net_g.train()
36
+ train_opt = self.opt['train']
37
+
38
+ self.ema_decay = train_opt.get('ema_decay', 0)
39
+ if self.ema_decay > 0:
40
+ logger = get_root_logger()
41
+ logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
42
+ # define network net_g with Exponential Moving Average (EMA)
43
+ # net_g_ema is used only for testing on one GPU and saving
44
+ # There is no need to wrap with DistributedDataParallel
45
+ self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
46
+ # load pretrained model
47
+ load_path = self.opt['path'].get('pretrain_network_g', None)
48
+ if load_path is not None:
49
+ self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
50
+ else:
51
+ self.model_ema(0) # copy net_g weight
52
+ self.net_g_ema.eval()
53
+
54
+ # define losses
55
+ if train_opt.get('pixel_opt'):
56
+ self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
57
+ else:
58
+ self.cri_pix = None
59
+
60
+ if train_opt.get('perceptual_opt'):
61
+ self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
62
+ else:
63
+ self.cri_perceptual = None
64
+
65
+ if self.cri_pix is None and self.cri_perceptual is None:
66
+ raise ValueError('Both pixel and perceptual losses are None.')
67
+
68
+ # set up optimizers and schedulers
69
+ self.setup_optimizers()
70
+ self.setup_schedulers()
71
+
72
+ def setup_optimizers(self):
73
+ train_opt = self.opt['train']
74
+ optim_params = []
75
+ for k, v in self.net_g.named_parameters():
76
+ if v.requires_grad:
77
+ optim_params.append(v)
78
+ else:
79
+ logger = get_root_logger()
80
+ logger.warning(f'Params {k} will not be optimized.')
81
+
82
+ optim_type = train_opt['optim_g'].pop('type')
83
+ self.optimizer_g = self.get_optimizer(optim_type, optim_params, **train_opt['optim_g'])
84
+ self.optimizers.append(self.optimizer_g)
85
+
86
+ def feed_data(self, data):
87
+ self.lq = data['lq'].to(self.device)
88
+ if 'gt' in data:
89
+ self.gt = data['gt'].to(self.device)
90
+
91
+ def optimize_parameters(self, current_iter):
92
+ self.optimizer_g.zero_grad()
93
+ self.output = self.net_g(self.lq)
94
+
95
+ l_total = 0
96
+ loss_dict = OrderedDict()
97
+ # pixel loss
98
+ if self.cri_pix:
99
+ l_pix = self.cri_pix(self.output, self.gt)
100
+ l_total += l_pix
101
+ loss_dict['l_pix'] = l_pix
102
+ # perceptual loss
103
+ if self.cri_perceptual:
104
+ l_percep, l_style = self.cri_perceptual(self.output, self.gt)
105
+ if l_percep is not None:
106
+ l_total += l_percep
107
+ loss_dict['l_percep'] = l_percep
108
+ if l_style is not None:
109
+ l_total += l_style
110
+ loss_dict['l_style'] = l_style
111
+
112
+ l_total.backward()
113
+ self.optimizer_g.step()
114
+
115
+ self.log_dict = self.reduce_loss_dict(loss_dict)
116
+
117
+ if self.ema_decay > 0:
118
+ self.model_ema(decay=self.ema_decay)
119
+
120
+ def test(self):
121
+ if hasattr(self, 'ema_decay'):
122
+ self.net_g_ema.eval()
123
+ with torch.no_grad():
124
+ self.output = self.net_g_ema(self.lq)
125
+ else:
126
+ self.net_g.eval()
127
+ with torch.no_grad():
128
+ self.output = self.net_g(self.lq)
129
+ self.net_g.train()
130
+
131
+ def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
132
+ if self.opt['rank'] == 0:
133
+ self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
134
+
135
+ def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
136
+ dataset_name = dataloader.dataset.opt['name']
137
+ with_metrics = self.opt['val'].get('metrics') is not None
138
+ if with_metrics:
139
+ self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
140
+ pbar = tqdm(total=len(dataloader), unit='image')
141
+
142
+ for idx, val_data in enumerate(dataloader):
143
+ img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
144
+ self.feed_data(val_data)
145
+ self.test()
146
+
147
+ visuals = self.get_current_visuals()
148
+ sr_img = tensor2img([visuals['result']])
149
+ if 'gt' in visuals:
150
+ gt_img = tensor2img([visuals['gt']])
151
+ del self.gt
152
+
153
+ # tentative for out of GPU memory
154
+ del self.lq
155
+ del self.output
156
+ torch.cuda.empty_cache()
157
+
158
+ if save_img:
159
+ if self.opt['is_train']:
160
+ save_img_path = osp.join(self.opt['path']['visualization'], img_name,
161
+ f'{img_name}_{current_iter}.png')
162
+ else:
163
+ if self.opt['val']['suffix']:
164
+ save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
165
+ f'{img_name}_{self.opt["val"]["suffix"]}.png')
166
+ else:
167
+ save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
168
+ f'{img_name}_{self.opt["name"]}.png')
169
+ imwrite(sr_img, save_img_path)
170
+
171
+ if with_metrics:
172
+ # calculate metrics
173
+ for name, opt_ in self.opt['val']['metrics'].items():
174
+ metric_data = dict(img1=sr_img, img2=gt_img)
175
+ self.metric_results[name] += calculate_metric(metric_data, opt_)
176
+ pbar.update(1)
177
+ pbar.set_description(f'Test {img_name}')
178
+ pbar.close()
179
+
180
+ if with_metrics:
181
+ for metric in self.metric_results.keys():
182
+ self.metric_results[metric] /= (idx + 1)
183
+
184
+ self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
185
+
186
+ def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
187
+ log_str = f'Validation {dataset_name}\n'
188
+ for metric, value in self.metric_results.items():
189
+ log_str += f'\t # {metric}: {value:.4f}\n'
190
+ logger = get_root_logger()
191
+ logger.info(log_str)
192
+ if tb_logger:
193
+ for metric, value in self.metric_results.items():
194
+ tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
195
+
196
+ def get_current_visuals(self):
197
+ out_dict = OrderedDict()
198
+ out_dict['lq'] = self.lq.detach().cpu()
199
+ out_dict['result'] = self.output.detach().cpu()
200
+ if hasattr(self, 'gt'):
201
+ out_dict['gt'] = self.gt.detach().cpu()
202
+ return out_dict
203
+
204
+ def save(self, epoch, current_iter):
205
+ if hasattr(self, 'ema_decay'):
206
+ self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
207
+ else:
208
+ self.save_network(self.net_g, 'net_g', current_iter)
209
+ self.save_training_state(epoch, current_iter)
basicsr/models/vqgan_model.py ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from collections import OrderedDict
3
+ from os import path as osp
4
+ from tqdm import tqdm
5
+
6
+ from basicsr.archs import build_network
7
+ from basicsr.losses import build_loss
8
+ from basicsr.metrics import calculate_metric
9
+ from basicsr.utils import get_root_logger, imwrite, tensor2img
10
+ from basicsr.utils.registry import MODEL_REGISTRY
11
+ import torch.nn.functional as F
12
+ from .sr_model import SRModel
13
+
14
+
15
+ @MODEL_REGISTRY.register()
16
+ class VQGANModel(SRModel):
17
+ def feed_data(self, data):
18
+ self.gt = data['gt'].to(self.device)
19
+ self.b = self.gt.shape[0]
20
+
21
+
22
+ def init_training_settings(self):
23
+ logger = get_root_logger()
24
+ train_opt = self.opt['train']
25
+
26
+ self.ema_decay = train_opt.get('ema_decay', 0)
27
+ if self.ema_decay > 0:
28
+ logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
29
+ # define network net_g with Exponential Moving Average (EMA)
30
+ # net_g_ema is used only for testing on one GPU and saving
31
+ # There is no need to wrap with DistributedDataParallel
32
+ self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
33
+ # load pretrained model
34
+ load_path = self.opt['path'].get('pretrain_network_g', None)
35
+ if load_path is not None:
36
+ self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
37
+ else:
38
+ self.model_ema(0) # copy net_g weight
39
+ self.net_g_ema.eval()
40
+
41
+ # define network net_d
42
+ self.net_d = build_network(self.opt['network_d'])
43
+ self.net_d = self.model_to_device(self.net_d)
44
+ self.print_network(self.net_d)
45
+
46
+ # load pretrained models
47
+ load_path = self.opt['path'].get('pretrain_network_d', None)
48
+ if load_path is not None:
49
+ self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))
50
+
51
+ self.net_g.train()
52
+ self.net_d.train()
53
+
54
+ # define losses
55
+ if train_opt.get('pixel_opt'):
56
+ self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
57
+ else:
58
+ self.cri_pix = None
59
+
60
+ if train_opt.get('perceptual_opt'):
61
+ self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
62
+ else:
63
+ self.cri_perceptual = None
64
+
65
+ if train_opt.get('gan_opt'):
66
+ self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
67
+
68
+ if train_opt.get('codebook_opt'):
69
+ self.l_weight_codebook = train_opt['codebook_opt'].get('loss_weight', 1.0)
70
+ else:
71
+ self.l_weight_codebook = 1.0
72
+
73
+ self.vqgan_quantizer = self.opt['network_g']['quantizer']
74
+ logger.info(f'vqgan_quantizer: {self.vqgan_quantizer}')
75
+
76
+ self.net_g_start_iter = train_opt.get('net_g_start_iter', 0)
77
+ self.net_d_iters = train_opt.get('net_d_iters', 1)
78
+ self.net_d_start_iter = train_opt.get('net_d_start_iter', 0)
79
+ self.disc_weight = train_opt.get('disc_weight', 0.8)
80
+
81
+ # set up optimizers and schedulers
82
+ self.setup_optimizers()
83
+ self.setup_schedulers()
84
+
85
+ def calculate_adaptive_weight(self, recon_loss, g_loss, last_layer, disc_weight_max):
86
+ recon_grads = torch.autograd.grad(recon_loss, last_layer, retain_graph=True)[0]
87
+ g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
88
+
89
+ d_weight = torch.norm(recon_grads) / (torch.norm(g_grads) + 1e-4)
90
+ d_weight = torch.clamp(d_weight, 0.0, disc_weight_max).detach()
91
+ return d_weight
92
+
93
+ def adopt_weight(self, weight, global_step, threshold=0, value=0.):
94
+ if global_step < threshold:
95
+ weight = value
96
+ return weight
97
+
98
+ def setup_optimizers(self):
99
+ train_opt = self.opt['train']
100
+ # optimizer g
101
+ optim_params_g = []
102
+ for k, v in self.net_g.named_parameters():
103
+ if v.requires_grad:
104
+ optim_params_g.append(v)
105
+ else:
106
+ logger = get_root_logger()
107
+ logger.warning(f'Params {k} will not be optimized.')
108
+ optim_type = train_opt['optim_g'].pop('type')
109
+ self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])
110
+ self.optimizers.append(self.optimizer_g)
111
+ # optimizer d
112
+ optim_type = train_opt['optim_d'].pop('type')
113
+ self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
114
+ self.optimizers.append(self.optimizer_d)
115
+
116
+
117
+ def optimize_parameters(self, current_iter):
118
+ logger = get_root_logger()
119
+ loss_dict = OrderedDict()
120
+ if self.opt['network_g']['quantizer'] == 'gumbel':
121
+ self.net_g.module.quantize.temperature = max(1/16, ((-1/160000) * current_iter) + 1)
122
+ if current_iter%1000 == 0:
123
+ logger.info(f'temperature: {self.net_g.module.quantize.temperature}')
124
+
125
+ # optimize net_g
126
+ for p in self.net_d.parameters():
127
+ p.requires_grad = False
128
+
129
+ self.optimizer_g.zero_grad()
130
+ self.output, l_codebook, quant_stats = self.net_g(self.gt)
131
+
132
+ l_codebook = l_codebook*self.l_weight_codebook
133
+
134
+ l_g_total = 0
135
+ if current_iter % self.net_d_iters == 0 and current_iter > self.net_g_start_iter:
136
+ # pixel loss
137
+ if self.cri_pix:
138
+ l_g_pix = self.cri_pix(self.output, self.gt)
139
+ l_g_total += l_g_pix
140
+ loss_dict['l_g_pix'] = l_g_pix
141
+ # perceptual loss
142
+ if self.cri_perceptual:
143
+ l_g_percep = self.cri_perceptual(self.output, self.gt)
144
+ l_g_total += l_g_percep
145
+ loss_dict['l_g_percep'] = l_g_percep
146
+
147
+ # gan loss
148
+ if current_iter > self.net_d_start_iter:
149
+ # fake_g_pred = self.net_d(self.output_1024)
150
+ fake_g_pred = self.net_d(self.output)
151
+ l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
152
+ recon_loss = l_g_total
153
+ last_layer = self.net_g.module.generator.blocks[-1].weight
154
+ d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
155
+ d_weight *= self.adopt_weight(1, current_iter, self.net_d_start_iter)
156
+ d_weight *= self.disc_weight # tamming setting 0.8
157
+ l_g_total += d_weight * l_g_gan
158
+ loss_dict['l_g_gan'] = d_weight * l_g_gan
159
+
160
+ l_g_total += l_codebook
161
+ loss_dict['l_codebook'] = l_codebook
162
+
163
+ l_g_total.backward()
164
+ self.optimizer_g.step()
165
+
166
+ # optimize net_d
167
+ if current_iter > self.net_d_start_iter:
168
+ for p in self.net_d.parameters():
169
+ p.requires_grad = True
170
+
171
+ self.optimizer_d.zero_grad()
172
+ # real
173
+ real_d_pred = self.net_d(self.gt)
174
+ l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
175
+ loss_dict['l_d_real'] = l_d_real
176
+ loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
177
+ l_d_real.backward()
178
+ # fake
179
+ fake_d_pred = self.net_d(self.output.detach())
180
+ l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
181
+ loss_dict['l_d_fake'] = l_d_fake
182
+ loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
183
+ l_d_fake.backward()
184
+ self.optimizer_d.step()
185
+
186
+ self.log_dict = self.reduce_loss_dict(loss_dict)
187
+
188
+ if self.ema_decay > 0:
189
+ self.model_ema(decay=self.ema_decay)
190
+
191
+
192
+ def test(self):
193
+ with torch.no_grad():
194
+ if hasattr(self, 'net_g_ema'):
195
+ self.net_g_ema.eval()
196
+ self.output, _, _ = self.net_g_ema(self.gt)
197
+ else:
198
+ logger = get_root_logger()
199
+ logger.warning('Do not have self.net_g_ema, use self.net_g.')
200
+ self.net_g.eval()
201
+ self.output, _, _ = self.net_g(self.gt)
202
+ self.net_g.train()
203
+
204
+
205
+ def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
206
+ if self.opt['rank'] == 0:
207
+ self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
208
+
209
+
210
+ def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
211
+ dataset_name = dataloader.dataset.opt['name']
212
+ with_metrics = self.opt['val'].get('metrics') is not None
213
+ if with_metrics:
214
+ self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
215
+ pbar = tqdm(total=len(dataloader), unit='image')
216
+
217
+ for idx, val_data in enumerate(dataloader):
218
+ img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
219
+ self.feed_data(val_data)
220
+ self.test()
221
+
222
+ visuals = self.get_current_visuals()
223
+ sr_img = tensor2img([visuals['result']])
224
+ if 'gt' in visuals:
225
+ gt_img = tensor2img([visuals['gt']])
226
+ del self.gt
227
+
228
+ # tentative for out of GPU memory
229
+ del self.lq
230
+ del self.output
231
+ torch.cuda.empty_cache()
232
+
233
+ if save_img:
234
+ if self.opt['is_train']:
235
+ save_img_path = osp.join(self.opt['path']['visualization'], img_name,
236
+ f'{img_name}_{current_iter}.png')
237
+ else:
238
+ if self.opt['val']['suffix']:
239
+ save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
240
+ f'{img_name}_{self.opt["val"]["suffix"]}.png')
241
+ else:
242
+ save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
243
+ f'{img_name}_{self.opt["name"]}.png')
244
+ imwrite(sr_img, save_img_path)
245
+
246
+ if with_metrics:
247
+ # calculate metrics
248
+ for name, opt_ in self.opt['val']['metrics'].items():
249
+ metric_data = dict(img1=sr_img, img2=gt_img)
250
+ self.metric_results[name] += calculate_metric(metric_data, opt_)
251
+ pbar.update(1)
252
+ pbar.set_description(f'Test {img_name}')
253
+ pbar.close()
254
+
255
+ if with_metrics:
256
+ for metric in self.metric_results.keys():
257
+ self.metric_results[metric] /= (idx + 1)
258
+
259
+ self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
260
+
261
+
262
+ def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
263
+ log_str = f'Validation {dataset_name}\n'
264
+ for metric, value in self.metric_results.items():
265
+ log_str += f'\t # {metric}: {value:.4f}\n'
266
+ logger = get_root_logger()
267
+ logger.info(log_str)
268
+ if tb_logger:
269
+ for metric, value in self.metric_results.items():
270
+ tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
271
+
272
+
273
+ def get_current_visuals(self):
274
+ out_dict = OrderedDict()
275
+ out_dict['gt'] = self.gt.detach().cpu()
276
+ out_dict['result'] = self.output.detach().cpu()
277
+ return out_dict
278
+
279
+ def save(self, epoch, current_iter):
280
+ if self.ema_decay > 0:
281
+ self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
282
+ else:
283
+ self.save_network(self.net_g, 'net_g', current_iter)
284
+ self.save_network(self.net_d, 'net_d', current_iter)
285
+ self.save_training_state(epoch, current_iter)
docs/history_changelog.md CHANGED
@@ -1,5 +1,6 @@
1
  # History of Changelog
2
 
 
3
  - **2023.04.09**: Add features of inpainting and colorization for cropped face images.
4
  - **2023.02.10**: Include `dlib` as a new face detector option, it produces more accurate face identity.
5
  - **2022.10.05**: Support video input `--input_path [YOUR_VIDEO.mp4]`. Try it to enhance your videos! :clapper:
 
1
  # History of Changelog
2
 
3
+ - **2023.04.19**: :whale: Training codes and config files are public available now.
4
  - **2023.04.09**: Add features of inpainting and colorization for cropped face images.
5
  - **2023.02.10**: Include `dlib` as a new face detector option, it produces more accurate face identity.
6
  - **2022.10.05**: Support video input `--input_path [YOUR_VIDEO.mp4]`. Try it to enhance your videos! :clapper:
docs/train.md ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # :milky_way: Training Procedures
2
+ [English](train.md) **|** [简体中文](train_CN.md)
3
+ ## Preparing Dataset
4
+
5
+ - Download training dataset: [FFHQ](https://github.com/NVlabs/ffhq-dataset)
6
+
7
+ ---
8
+
9
+ ## Training
10
+
11
+ #### 👾 Stage I - VQGAN
12
+ - Training VQGAN:
13
+ > python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/VQGAN_512_ds32_nearest_stage1.yml --launcher pytorch
14
+
15
+ - After VQGAN training, you can pre-calculate code sequence for the training dataset to speed up the later training stages:
16
+ > python scripts/generate_latent_gt.py
17
+
18
+ - If you don't require training your own VQGAN, you can find pre-trained VQGAN and the corresponding code sequence in the folder of Releases v0.1.0: https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
19
+
20
+ #### 🚀 Stage II - CodeFormer (w=0)
21
+ - Training Code Sequence Prediction Module:
22
+ > python -m torch.distributed.launch --nproc_per_node=8 --master_port=4322 basicsr/train.py -opt options/CodeFormer_stage2.yml --launcher pytorch
23
+
24
+ #### 🛸 Stage III - CodeFormer (w=1)
25
+ - Training Controllable Module:
26
+ > python -m torch.distributed.launch --nproc_per_node=8 --master_port=4323 basicsr/train.py -opt options/CodeFormer_stage3.yml --launcher pytorch
27
+
28
+ - Pre-trained CodeFormer can be found in the folder of Releases v0.1.0: https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
29
+
30
+ ---
31
+
32
+ :whale: The project was built using the framework [BasicSR](https://github.com/XPixelGroup/BasicSR). For detailed information on training, resuming, and other related topics, please refer to the documentation: https://github.com/XPixelGroup/BasicSR/blob/master/docs/TrainTest.md
docs/train_CN.md ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # :milky_way: 训练文档
2
+ [English](train.md) **|** [简体中文](train_CN.md)
3
+
4
+ ## 准备数据集
5
+ - 下载训练数据集: [FFHQ](https://github.com/NVlabs/ffhq-dataset)
6
+
7
+ ---
8
+
9
+ ## 训练
10
+
11
+ #### 👾 阶段 I - VQGAN
12
+ - 训练VQGAN:
13
+ > python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/VQGAN_512_ds32_nearest_stage1.yml --launcher pytorch
14
+
15
+ - 训练完VQGAN后,可以通过下面代码预先获得训练数据集的密码本序列,从而加速后面阶段的训练过程:
16
+ > python scripts/generate_latent_gt.py
17
+
18
+ - 如果你不需要训练自己的VQGAN,可以在Release v0.1.0文档中找到预训练的VQGAN和对应的密码本序列: https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
19
+
20
+ #### 🚀 阶段 II - CodeFormer (w=0)
21
+ - 训练密码本训练预测模块:
22
+ > python -m torch.distributed.launch --nproc_per_node=8 --master_port=4322 basicsr/train.py -opt options/CodeFormer_stage2.yml --launcher pytorch
23
+
24
+ #### 🛸 阶段 III - CodeFormer (w=1)
25
+ - 训练可调模块:
26
+ > python -m torch.distributed.launch --nproc_per_node=8 --master_port=4323 basicsr/train.py -opt options/CodeFormer_stage3.yml --launcher pytorch
27
+
28
+ - 预训练CodeFormer模型可以在Releases v0.1.0文档里下载: https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
29
+
30
+ ---
31
+
32
+ :whale: 该项目是基于[BasicSR](https://github.com/XPixelGroup/BasicSR)框架搭建,有关训练、Resume等详细介绍可以查看文档: https://github.com/XPixelGroup/BasicSR/blob/master/docs/TrainTest_CN.md
options/CodeFormer_colorization.yml ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: CodeFormer_colorization
3
+ model_type: CodeFormerIdxModel
4
+ num_gpu: 8
5
+ manual_seed: 0
6
+
7
+ # dataset and data loader settings
8
+ datasets:
9
+ train:
10
+ name: FFHQ
11
+ type: FFHQBlindDataset
12
+ dataroot_gt: datasets/ffhq/ffhq_512
13
+ filename_tmpl: '{}'
14
+ io_backend:
15
+ type: disk
16
+
17
+ in_size: 512
18
+ gt_size: 512
19
+ mean: [0.5, 0.5, 0.5]
20
+ std: [0.5, 0.5, 0.5]
21
+ use_hflip: true
22
+ use_corrupt: true
23
+ latent_gt_path: ~
24
+
25
+ # large degradation in stageII
26
+ blur_kernel_size: 41
27
+ use_motion_kernel: false
28
+ motion_kernel_prob: 0.001
29
+ kernel_list: ['iso', 'aniso']
30
+ kernel_prob: [0.5, 0.5]
31
+ blur_sigma: [1, 15]
32
+ downsample_range: [4, 30]
33
+ noise_range: [0, 20]
34
+ jpeg_range: [30, 80]
35
+
36
+ # color jitter and gray
37
+ color_jitter_prob: 0.3
38
+ color_jitter_shift: 20
39
+ color_jitter_pt_prob: 0.3
40
+ gray_prob: 0.01
41
+
42
+ latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
43
+
44
+ # data loader
45
+ num_worker_per_gpu: 2
46
+ batch_size_per_gpu: 4
47
+ dataset_enlarge_ratio: 100
48
+ prefetch_mode: ~
49
+
50
+ # val:
51
+ # name: CelebA-HQ-512
52
+ # type: PairedImageDataset
53
+ # dataroot_lq: datasets/faces/validation/lq
54
+ # dataroot_gt: datasets/faces/validation/gt
55
+ # io_backend:
56
+ # type: disk
57
+ # mean: [0.5, 0.5, 0.5]
58
+ # std: [0.5, 0.5, 0.5]
59
+ # scale: 1
60
+
61
+ # network structures
62
+ network_g:
63
+ type: CodeFormer
64
+ dim_embd: 512
65
+ n_head: 8
66
+ n_layers: 9
67
+ codebook_size: 1024
68
+ connect_list: ['32', '64', '128', '256']
69
+ fix_modules: ['quantize','generator']
70
+ vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
71
+
72
+ # path
73
+ path:
74
+ pretrain_network_g: ~
75
+ param_key_g: params_ema
76
+ strict_load_g: false
77
+ pretrain_network_d: ~
78
+ strict_load_d: true
79
+ resume_state: ~
80
+
81
+ # base_lr(4.5e-6)*bach_size(4)
82
+ train:
83
+ use_hq_feat_loss: true
84
+ feat_loss_weight: 1.0
85
+ cross_entropy_loss: true
86
+ entropy_loss_weight: 0.5
87
+ fidelity_weight: 0
88
+
89
+ optim_g:
90
+ type: Adam
91
+ lr: !!float 1e-4
92
+ weight_decay: 0
93
+ betas: [0.9, 0.99]
94
+
95
+ scheduler:
96
+ type: MultiStepLR
97
+ milestones: [400000, 450000]
98
+ gamma: 0.5
99
+
100
+ total_iter: 500000
101
+
102
+ warmup_iter: -1 # no warm up
103
+ ema_decay: 0.995
104
+
105
+ use_adaptive_weight: true
106
+
107
+ net_g_start_iter: 0
108
+ net_d_iters: 1
109
+ net_d_start_iter: 0
110
+ manual_seed: 0
111
+
112
+ # validation settings
113
+ val:
114
+ val_freq: !!float 5e10 # no validation
115
+ save_img: true
116
+
117
+ metrics:
118
+ psnr: # metric name, can be arbitrary
119
+ type: calculate_psnr
120
+ crop_border: 4
121
+ test_y_channel: false
122
+
123
+ # logging settings
124
+ logger:
125
+ print_freq: 100
126
+ save_checkpoint_freq: !!float 1e4
127
+ use_tb_logger: true
128
+ wandb:
129
+ project: ~
130
+ resume_id: ~
131
+
132
+ # dist training settings
133
+ dist_params:
134
+ backend: nccl
135
+ port: 29419
136
+
137
+ find_unused_parameters: true
options/CodeFormer_inpainting.yml ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: CodeFormer_inpainting
3
+ model_type: CodeFormerModel
4
+ num_gpu: 4
5
+ manual_seed: 0
6
+
7
+ # dataset and data loader settings
8
+ datasets:
9
+ train:
10
+ name: FFHQ
11
+ type: FFHQBlindDataset
12
+ dataroot_gt: datasets/ffhq/ffhq_512
13
+ filename_tmpl: '{}'
14
+ io_backend:
15
+ type: disk
16
+
17
+ in_size: 512
18
+ gt_size: 512
19
+ mean: [0.5, 0.5, 0.5]
20
+ std: [0.5, 0.5, 0.5]
21
+ use_hflip: true
22
+ use_corrupt: false
23
+ gen_inpaint_mask: true
24
+
25
+
26
+ latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
27
+
28
+ # data loader
29
+ num_worker_per_gpu: 2
30
+ batch_size_per_gpu: 3
31
+ dataset_enlarge_ratio: 100
32
+ prefetch_mode: ~
33
+
34
+ # val:
35
+ # name: CelebA-HQ-512
36
+ # type: PairedImageDataset
37
+ # dataroot_lq: datasets/faces/validation/lq
38
+ # dataroot_gt: datasets/faces/validation/gt
39
+ # io_backend:
40
+ # type: disk
41
+ # mean: [0.5, 0.5, 0.5]
42
+ # std: [0.5, 0.5, 0.5]
43
+ # scale: 1
44
+
45
+ # network structures
46
+ network_g:
47
+ type: CodeFormer
48
+ dim_embd: 512
49
+ n_head: 8
50
+ n_layers: 9
51
+ codebook_size: 1024
52
+ connect_list: ['32', '64', '128']
53
+ fix_modules: ['quantize','generator']
54
+ vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
55
+
56
+ network_d:
57
+ type: VQGANDiscriminator
58
+ nc: 3
59
+ ndf: 64
60
+ n_layers: 4
61
+ model_path: ~
62
+
63
+ # path
64
+ path:
65
+ pretrain_network_g: ~
66
+ param_key_g: params_ema
67
+ strict_load_g: true
68
+ pretrain_network_d: ~
69
+ strict_load_d: true
70
+ resume_state: ~
71
+
72
+ # base_lr(4.5e-6)*bach_size(4)
73
+ train:
74
+ use_hq_feat_loss: true
75
+ feat_loss_weight: 1.0
76
+ cross_entropy_loss: true
77
+ entropy_loss_weight: 0.5
78
+ scale_adaptive_gan_weight: 0.1
79
+ fidelity_weight: 1.0
80
+
81
+ optim_g:
82
+ type: Adam
83
+ lr: !!float 7e-5
84
+ weight_decay: 0
85
+ betas: [0.9, 0.99]
86
+ optim_d:
87
+ type: Adam
88
+ lr: !!float 7e-5
89
+ weight_decay: 0
90
+ betas: [0.9, 0.99]
91
+
92
+ scheduler:
93
+ type: MultiStepLR
94
+ milestones: [250000, 300000]
95
+ gamma: 0.5
96
+
97
+ total_iter: 300000
98
+
99
+ warmup_iter: -1 # no warm up
100
+ ema_decay: 0.997
101
+
102
+ pixel_opt:
103
+ type: L1Loss
104
+ loss_weight: 1.0
105
+ reduction: mean
106
+
107
+ perceptual_opt:
108
+ type: LPIPSLoss
109
+ loss_weight: 1.0
110
+ use_input_norm: true
111
+ range_norm: true
112
+
113
+ gan_opt:
114
+ type: GANLoss
115
+ gan_type: hinge
116
+ loss_weight: !!float 1.0 # adaptive_weighting
117
+
118
+
119
+ use_adaptive_weight: true
120
+
121
+ net_g_start_iter: 0
122
+ net_d_iters: 1
123
+ net_d_start_iter: 296001
124
+ manual_seed: 0
125
+
126
+ # validation settings
127
+ val:
128
+ val_freq: !!float 5e10 # no validation
129
+ save_img: true
130
+
131
+ metrics:
132
+ psnr: # metric name, can be arbitrary
133
+ type: calculate_psnr
134
+ crop_border: 4
135
+ test_y_channel: false
136
+
137
+ # logging settings
138
+ logger:
139
+ print_freq: 100
140
+ save_checkpoint_freq: !!float 1e4
141
+ use_tb_logger: true
142
+ wandb:
143
+ project: ~
144
+ resume_id: ~
145
+
146
+ # dist training settings
147
+ dist_params:
148
+ backend: nccl
149
+ port: 29420
150
+
151
+ find_unused_parameters: true
options/CodeFormer_stage2.yml ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: CodeFormer_stage2
3
+ model_type: CodeFormerIdxModel
4
+ num_gpu: 8
5
+ manual_seed: 0
6
+
7
+ # dataset and data loader settings
8
+ datasets:
9
+ train:
10
+ name: FFHQ
11
+ type: FFHQBlindDataset
12
+ dataroot_gt: datasets/ffhq/ffhq_512
13
+ filename_tmpl: '{}'
14
+ io_backend:
15
+ type: disk
16
+
17
+ in_size: 512
18
+ gt_size: 512
19
+ mean: [0.5, 0.5, 0.5]
20
+ std: [0.5, 0.5, 0.5]
21
+ use_hflip: true
22
+ use_corrupt: true
23
+ latent_gt_path: ~
24
+
25
+ # large degradation in stageII
26
+ blur_kernel_size: 41
27
+ use_motion_kernel: false
28
+ motion_kernel_prob: 0.001
29
+ kernel_list: ['iso', 'aniso']
30
+ kernel_prob: [0.5, 0.5]
31
+ blur_sigma: [1, 15]
32
+ downsample_range: [4, 30]
33
+ noise_range: [0, 20]
34
+ jpeg_range: [30, 80]
35
+
36
+ latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
37
+
38
+ # data loader
39
+ num_worker_per_gpu: 2
40
+ batch_size_per_gpu: 4
41
+ dataset_enlarge_ratio: 100
42
+ prefetch_mode: ~
43
+
44
+ # val:
45
+ # name: CelebA-HQ-512
46
+ # type: PairedImageDataset
47
+ # dataroot_lq: datasets/faces/validation/lq
48
+ # dataroot_gt: datasets/faces/validation/gt
49
+ # io_backend:
50
+ # type: disk
51
+ # mean: [0.5, 0.5, 0.5]
52
+ # std: [0.5, 0.5, 0.5]
53
+ # scale: 1
54
+
55
+ # network structures
56
+ network_g:
57
+ type: CodeFormer
58
+ dim_embd: 512
59
+ n_head: 8
60
+ n_layers: 9
61
+ codebook_size: 1024
62
+ connect_list: ['32', '64', '128', '256']
63
+ fix_modules: ['quantize','generator']
64
+ vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
65
+
66
+ # path
67
+ path:
68
+ pretrain_network_g: ~
69
+ param_key_g: params_ema
70
+ strict_load_g: false
71
+ pretrain_network_d: ~
72
+ strict_load_d: true
73
+ resume_state: ~
74
+
75
+ # base_lr(4.5e-6)*bach_size(4)
76
+ train:
77
+ use_hq_feat_loss: true
78
+ feat_loss_weight: 1.0
79
+ cross_entropy_loss: true
80
+ entropy_loss_weight: 0.5
81
+ fidelity_weight: 0
82
+
83
+ optim_g:
84
+ type: Adam
85
+ lr: !!float 1e-4
86
+ weight_decay: 0
87
+ betas: [0.9, 0.99]
88
+
89
+ scheduler:
90
+ type: MultiStepLR
91
+ milestones: [400000, 450000]
92
+ gamma: 0.5
93
+
94
+ # scheduler:
95
+ # type: CosineAnnealingRestartLR
96
+ # periods: [500000]
97
+ # restart_weights: [1]
98
+ # eta_min: !!float 2e-5 # no lr reduce in official vqgan code
99
+
100
+ total_iter: 500000
101
+
102
+ warmup_iter: -1 # no warm up
103
+ ema_decay: 0.995
104
+
105
+ use_adaptive_weight: true
106
+
107
+ net_g_start_iter: 0
108
+ net_d_iters: 1
109
+ net_d_start_iter: 0
110
+ manual_seed: 0
111
+
112
+ # validation settings
113
+ val:
114
+ val_freq: !!float 5e10 # no validation
115
+ save_img: true
116
+
117
+ metrics:
118
+ psnr: # metric name, can be arbitrary
119
+ type: calculate_psnr
120
+ crop_border: 4
121
+ test_y_channel: false
122
+
123
+ # logging settings
124
+ logger:
125
+ print_freq: 100
126
+ save_checkpoint_freq: !!float 1e4
127
+ use_tb_logger: true
128
+ wandb:
129
+ project: ~
130
+ resume_id: ~
131
+
132
+ # dist training settings
133
+ dist_params:
134
+ backend: nccl
135
+ port: 29412
136
+
137
+ find_unused_parameters: true
options/CodeFormer_stage3.yml ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: CodeFormer_stage3
3
+ model_type: CodeFormerJointModel
4
+ num_gpu: 8
5
+ manual_seed: 0
6
+
7
+ # dataset and data loader settings
8
+ datasets:
9
+ train:
10
+ name: FFHQ
11
+ type: FFHQBlindJointDataset
12
+ dataroot_gt: datasets/ffhq/ffhq_512
13
+ filename_tmpl: '{}'
14
+ io_backend:
15
+ type: disk
16
+
17
+ in_size: 512
18
+ gt_size: 512
19
+ mean: [0.5, 0.5, 0.5]
20
+ std: [0.5, 0.5, 0.5]
21
+ use_hflip: true
22
+ use_corrupt: true
23
+ latent_gt_path: ~
24
+
25
+ blur_kernel_size: 41
26
+ use_motion_kernel: false
27
+ motion_kernel_prob: 0.001
28
+ kernel_list: ['iso', 'aniso']
29
+ kernel_prob: [0.5, 0.5]
30
+ # small degradation in stageIII
31
+ blur_sigma: [0.1, 10]
32
+ downsample_range: [1, 12]
33
+ noise_range: [0, 15]
34
+ jpeg_range: [60, 100]
35
+ # large degradation in stageII
36
+ blur_sigma_large: [1, 15]
37
+ downsample_range_large: [4, 30]
38
+ noise_range_large: [0, 20]
39
+ jpeg_range_large: [30, 80]
40
+
41
+
42
+ latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
43
+
44
+ # data loader
45
+ num_worker_per_gpu: 1
46
+ batch_size_per_gpu: 3
47
+ dataset_enlarge_ratio: 100
48
+ prefetch_mode: ~
49
+
50
+ # val:
51
+ # name: CelebA-HQ-512
52
+ # type: PairedImageDataset
53
+ # dataroot_lq: datasets/faces/validation/lq
54
+ # dataroot_gt: datasets/faces/validation/gt
55
+ # io_backend:
56
+ # type: disk
57
+ # mean: [0.5, 0.5, 0.5]
58
+ # std: [0.5, 0.5, 0.5]
59
+ # scale: 1
60
+
61
+ # network structures
62
+ network_g:
63
+ type: CodeFormer
64
+ dim_embd: 512
65
+ n_head: 8
66
+ n_layers: 9
67
+ codebook_size: 1024
68
+ connect_list: ['32', '64', '128', '256']
69
+ fix_modules: ['quantize','generator']
70
+
71
+ network_d:
72
+ type: VQGANDiscriminator
73
+ nc: 3
74
+ ndf: 64
75
+ n_layers: 4
76
+
77
+ # path
78
+ path:
79
+ pretrain_network_g: './experiments/pretrained_models/CodeFormer_stage2/net_g_latest.pth' # pretrained G model in StageII
80
+ param_key_g: params_ema
81
+ strict_load_g: true
82
+ pretrain_network_d: './experiments/pretrained_models/CodeFormer_stage2/net_d_latest.pth' # pretrained D model in StageII
83
+ resume_state: ~
84
+
85
+ # base_lr(4.5e-6)*bach_size(4)
86
+ train:
87
+ use_hq_feat_loss: true
88
+ feat_loss_weight: 1.0
89
+ cross_entropy_loss: true
90
+ entropy_loss_weight: 0.5
91
+ scale_adaptive_gan_weight: 0.1
92
+
93
+ optim_g:
94
+ type: Adam
95
+ lr: !!float 5e-5
96
+ weight_decay: 0
97
+ betas: [0.9, 0.99]
98
+ optim_d:
99
+ type: Adam
100
+ lr: !!float 5e-5
101
+ weight_decay: 0
102
+ betas: [0.9, 0.99]
103
+
104
+ scheduler:
105
+ type: CosineAnnealingRestartLR
106
+ periods: [150000]
107
+ restart_weights: [1]
108
+ eta_min: !!float 2e-5
109
+
110
+
111
+ total_iter: 150000
112
+
113
+ warmup_iter: -1 # no warm up
114
+ ema_decay: 0.997
115
+
116
+ pixel_opt:
117
+ type: L1Loss
118
+ loss_weight: 1.0
119
+ reduction: mean
120
+
121
+ perceptual_opt:
122
+ type: LPIPSLoss
123
+ loss_weight: 1.0
124
+ use_input_norm: true
125
+ range_norm: true
126
+
127
+ gan_opt:
128
+ type: GANLoss
129
+ gan_type: hinge
130
+ loss_weight: !!float 1.0 # adaptive_weighting
131
+
132
+ use_adaptive_weight: true
133
+
134
+ net_g_start_iter: 0
135
+ net_d_iters: 1
136
+ net_d_start_iter: 5001
137
+ manual_seed: 0
138
+
139
+ # validation settings
140
+ val:
141
+ val_freq: !!float 5e10 # no validation
142
+ save_img: true
143
+
144
+ metrics:
145
+ psnr: # metric name, can be arbitrary
146
+ type: calculate_psnr
147
+ crop_border: 4
148
+ test_y_channel: false
149
+
150
+ # logging settings
151
+ logger:
152
+ print_freq: 100
153
+ save_checkpoint_freq: !!float 5e3
154
+ use_tb_logger: true
155
+ wandb:
156
+ project: ~
157
+ resume_id: ~
158
+
159
+ # dist training settings
160
+ dist_params:
161
+ backend: nccl
162
+ port: 29413
163
+
164
+ find_unused_parameters: true
options/VQGAN_512_ds32_nearest_stage1.yml ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: VQGAN-512-ds32-nearest-stage1
3
+ model_type: VQGANModel
4
+ num_gpu: 8
5
+ manual_seed: 0
6
+
7
+ # dataset and data loader settings
8
+ datasets:
9
+ train:
10
+ name: FFHQ
11
+ type: FFHQBlindDataset
12
+ dataroot_gt: datasets/ffhq/ffhq_512
13
+ filename_tmpl: '{}'
14
+ io_backend:
15
+ type: disk
16
+
17
+ in_size: 512
18
+ gt_size: 512
19
+ mean: [0.5, 0.5, 0.5]
20
+ std: [0.5, 0.5, 0.5]
21
+ use_hflip: true
22
+ use_corrupt: false # for VQGAN
23
+
24
+ # data loader
25
+ num_worker_per_gpu: 2
26
+ batch_size_per_gpu: 4
27
+ dataset_enlarge_ratio: 100
28
+
29
+ prefetch_mode: cpu
30
+ num_prefetch_queue: 4
31
+
32
+ # val:
33
+ # name: CelebA-HQ-512
34
+ # type: PairedImageDataset
35
+ # dataroot_lq: datasets/faces/validation/gt
36
+ # dataroot_gt: datasets/faces/validation/gt
37
+ # io_backend:
38
+ # type: disk
39
+ # mean: [0.5, 0.5, 0.5]
40
+ # std: [0.5, 0.5, 0.5]
41
+ # scale: 1
42
+
43
+ # network structures
44
+ network_g:
45
+ type: VQAutoEncoder
46
+ img_size: 512
47
+ nf: 64
48
+ ch_mult: [1, 2, 2, 4, 4, 8]
49
+ quantizer: 'nearest'
50
+ codebook_size: 1024
51
+
52
+ network_d:
53
+ type: VQGANDiscriminator
54
+ nc: 3
55
+ ndf: 64
56
+
57
+ # path
58
+ path:
59
+ pretrain_network_g: ~
60
+ param_key_g: params_ema
61
+ strict_load_g: true
62
+ pretrain_network_d: ~
63
+ strict_load_d: true
64
+ resume_state: ~
65
+
66
+ # base_lr(4.5e-6)*bach_size(4)
67
+ train:
68
+ optim_g:
69
+ type: Adam
70
+ lr: !!float 7e-5
71
+ weight_decay: 0
72
+ betas: [0.9, 0.99]
73
+ optim_d:
74
+ type: Adam
75
+ lr: !!float 7e-5
76
+ weight_decay: 0
77
+ betas: [0.9, 0.99]
78
+
79
+ scheduler:
80
+ type: CosineAnnealingRestartLR
81
+ periods: [1600000]
82
+ restart_weights: [1]
83
+ eta_min: !!float 6e-5 # no lr reduce in official vqgan code
84
+
85
+ total_iter: 1600000
86
+
87
+ warmup_iter: -1 # no warm up
88
+ ema_decay: 0.995 # GFPGAN: 0.5**(32 / (10 * 1000) == 0.998; Unleashing: 0.995
89
+
90
+ pixel_opt:
91
+ type: L1Loss
92
+ loss_weight: 1.0
93
+ reduction: mean
94
+
95
+ perceptual_opt:
96
+ type: LPIPSLoss
97
+ loss_weight: 1.0
98
+ use_input_norm: true
99
+ range_norm: true
100
+
101
+ gan_opt:
102
+ type: GANLoss
103
+ gan_type: hinge
104
+ loss_weight: !!float 1.0 # adaptive_weighting
105
+
106
+ net_g_start_iter: 0
107
+ net_d_iters: 1
108
+ net_d_start_iter: 30001
109
+ manual_seed: 0
110
+
111
+ # validation settings
112
+ val:
113
+ val_freq: !!float 5e10 # no validation
114
+ save_img: true
115
+
116
+ metrics:
117
+ psnr: # metric name, can be arbitrary
118
+ type: calculate_psnr
119
+ crop_border: 4
120
+ test_y_channel: false
121
+
122
+ # logging settings
123
+ logger:
124
+ print_freq: 100
125
+ save_checkpoint_freq: !!float 1e4
126
+ use_tb_logger: true
127
+ wandb:
128
+ project: ~
129
+ resume_id: ~
130
+
131
+ # dist training settings
132
+ dist_params:
133
+ backend: nccl
134
+ port: 29411
135
+
136
+ find_unused_parameters: true
scripts/generate_latent_gt.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import numpy as np
4
+ import os
5
+ import cv2
6
+ import torch
7
+ from torchvision.transforms.functional import normalize
8
+ from basicsr.utils import imwrite, img2tensor, tensor2img
9
+
10
+ from basicsr.utils.registry import ARCH_REGISTRY
11
+
12
+ if __name__ == '__main__':
13
+ parser = argparse.ArgumentParser()
14
+ parser.add_argument('-i', '--test_path', type=str, default='datasets/ffhq/ffhq_512')
15
+ parser.add_argument('-o', '--save_root', type=str, default='./experiments/pretrained_models/vqgan')
16
+ parser.add_argument('--codebook_size', type=int, default=1024)
17
+ parser.add_argument('--ckpt_path', type=str, default='./experiments/pretrained_models/vqgan/net_g.pth')
18
+ args = parser.parse_args()
19
+
20
+ if args.save_root.endswith('/'): # solve when path ends with /
21
+ args.save_root = args.save_root[:-1]
22
+ dir_name = os.path.abspath(args.save_root)
23
+ os.makedirs(dir_name, exist_ok=True)
24
+
25
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
26
+ test_path = args.test_path
27
+ save_root = args.save_root
28
+ ckpt_path = args.ckpt_path
29
+ codebook_size = args.codebook_size
30
+
31
+ vqgan = ARCH_REGISTRY.get('VQAutoEncoder')(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',
32
+ codebook_size=codebook_size).to(device)
33
+ checkpoint = torch.load(ckpt_path)['params_ema']
34
+
35
+ vqgan.load_state_dict(checkpoint)
36
+ vqgan.eval()
37
+
38
+ sum_latent = np.zeros((codebook_size)).astype('float64')
39
+ size_latent = 16
40
+ latent = {}
41
+ latent['orig'] = {}
42
+ latent['hflip'] = {}
43
+ for i in ['orig', 'hflip']:
44
+ # for i in ['hflip']:
45
+ for img_path in sorted(glob.glob(os.path.join(test_path, '*.[jp][pn]g'))):
46
+ img_name = os.path.basename(img_path)
47
+ img = cv2.imread(img_path)
48
+ if i == 'hflip':
49
+ cv2.flip(img, 1, img)
50
+ img = img2tensor(img / 255., bgr2rgb=True, float32=True)
51
+ normalize(img, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
52
+ img = img.unsqueeze(0).to(device)
53
+ with torch.no_grad():
54
+ # output = net(img)[0]
55
+ x, feat_dict = vqgan.encoder(img, True)
56
+ x, _, log = vqgan.quantize(x)
57
+ # del output
58
+ torch.cuda.empty_cache()
59
+
60
+ min_encoding_indices = log['min_encoding_indices']
61
+ min_encoding_indices = min_encoding_indices.view(size_latent,size_latent)
62
+ latent[i][img_name[:-4]] = min_encoding_indices.cpu().numpy()
63
+ print(img_name, latent[i][img_name[:-4]].shape)
64
+
65
+ latent_save_path = os.path.join(save_root, f'latent_gt_code{codebook_size}.pth')
66
+ torch.save(latent, latent_save_path)
67
+ print(f'\nLatent GT code are saved in {save_root}')
scripts/inference_vqgan.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import numpy as np
4
+ import os
5
+ import cv2
6
+ import torch
7
+ from torchvision.transforms.functional import normalize
8
+ from basicsr.utils import imwrite, img2tensor, tensor2img
9
+
10
+ from basicsr.utils.registry import ARCH_REGISTRY
11
+
12
+ if __name__ == '__main__':
13
+ parser = argparse.ArgumentParser()
14
+ parser.add_argument('-i', '--test_path', type=str, default='datasets/ffhq/ffhq_512')
15
+ parser.add_argument('-o', '--save_root', type=str, default='./results/vqgan_rec')
16
+ parser.add_argument('--codebook_size', type=int, default=1024)
17
+ parser.add_argument('--ckpt_path', type=str, default='./experiments/pretrained_models/vqgan/net_g.pth')
18
+ args = parser.parse_args()
19
+
20
+ if args.save_root.endswith('/'): # solve when path ends with /
21
+ args.save_root = args.save_root[:-1]
22
+ dir_name = os.path.abspath(args.save_root)
23
+ os.makedirs(dir_name, exist_ok=True)
24
+
25
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
26
+ test_path = args.test_path
27
+ save_root = args.save_root
28
+ ckpt_path = args.ckpt_path
29
+ codebook_size = args.codebook_size
30
+
31
+ vqgan = ARCH_REGISTRY.get('VQAutoEncoder')(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',
32
+ codebook_size=codebook_size).to(device)
33
+ checkpoint = torch.load(ckpt_path)['params_ema']
34
+
35
+ vqgan.load_state_dict(checkpoint)
36
+ vqgan.eval()
37
+
38
+ for img_path in sorted(glob.glob(os.path.join(test_path, '*.[jp][pn]g'))):
39
+ img_name = os.path.basename(img_path)
40
+ print(img_name)
41
+ img = cv2.imread(img_path)
42
+ img = img2tensor(img / 255., bgr2rgb=True, float32=True)
43
+ normalize(img, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
44
+ img = img.unsqueeze(0).to(device)
45
+ with torch.no_grad():
46
+ output = vqgan(img)[0]
47
+ output = tensor2img(output, min_max=[-1,1])
48
+ img = tensor2img(img, min_max=[-1,1])
49
+ restored_img = np.concatenate([img, output], axis=1)
50
+ restored_img = output
51
+ del output
52
+ torch.cuda.empty_cache()
53
+
54
+ path = os.path.splitext(os.path.join(save_root, img_name))[0]
55
+ save_path = f'{path}.png'
56
+ imwrite(restored_img, save_path)
57
+
58
+ print(f'\nAll results are saved in {save_root}')
59
+