Spaces:
Runtime error
Runtime error
add lr_scheduler.py
Browse files
basicsr/utils/lr_scheduler.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from collections import Counter
|
3 |
+
from torch.optim.lr_scheduler import _LRScheduler
|
4 |
+
|
5 |
+
|
6 |
+
class MultiStepRestartLR(_LRScheduler):
|
7 |
+
""" MultiStep with restarts learning rate scheme.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
optimizer (torch.nn.optimizer): Torch optimizer.
|
11 |
+
milestones (list): Iterations that will decrease learning rate.
|
12 |
+
gamma (float): Decrease ratio. Default: 0.1.
|
13 |
+
restarts (list): Restart iterations. Default: [0].
|
14 |
+
restart_weights (list): Restart weights at each restart iteration.
|
15 |
+
Default: [1].
|
16 |
+
last_epoch (int): Used in _LRScheduler. Default: -1.
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(self, optimizer, milestones, gamma=0.1, restarts=(0, ), restart_weights=(1, ), last_epoch=-1):
|
20 |
+
self.milestones = Counter(milestones)
|
21 |
+
self.gamma = gamma
|
22 |
+
self.restarts = restarts
|
23 |
+
self.restart_weights = restart_weights
|
24 |
+
assert len(self.restarts) == len(self.restart_weights), 'restarts and their weights do not match.'
|
25 |
+
super(MultiStepRestartLR, self).__init__(optimizer, last_epoch)
|
26 |
+
|
27 |
+
def get_lr(self):
|
28 |
+
if self.last_epoch in self.restarts:
|
29 |
+
weight = self.restart_weights[self.restarts.index(self.last_epoch)]
|
30 |
+
return [group['initial_lr'] * weight for group in self.optimizer.param_groups]
|
31 |
+
if self.last_epoch not in self.milestones:
|
32 |
+
return [group['lr'] for group in self.optimizer.param_groups]
|
33 |
+
return [group['lr'] * self.gamma**self.milestones[self.last_epoch] for group in self.optimizer.param_groups]
|
34 |
+
|
35 |
+
|
36 |
+
def get_position_from_periods(iteration, cumulative_period):
|
37 |
+
"""Get the position from a period list.
|
38 |
+
|
39 |
+
It will return the index of the right-closest number in the period list.
|
40 |
+
For example, the cumulative_period = [100, 200, 300, 400],
|
41 |
+
if iteration == 50, return 0;
|
42 |
+
if iteration == 210, return 2;
|
43 |
+
if iteration == 300, return 2.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
iteration (int): Current iteration.
|
47 |
+
cumulative_period (list[int]): Cumulative period list.
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
int: The position of the right-closest number in the period list.
|
51 |
+
"""
|
52 |
+
for i, period in enumerate(cumulative_period):
|
53 |
+
if iteration <= period:
|
54 |
+
return i
|
55 |
+
|
56 |
+
|
57 |
+
class CosineAnnealingRestartLR(_LRScheduler):
|
58 |
+
""" Cosine annealing with restarts learning rate scheme.
|
59 |
+
|
60 |
+
An example of config:
|
61 |
+
periods = [10, 10, 10, 10]
|
62 |
+
restart_weights = [1, 0.5, 0.5, 0.5]
|
63 |
+
eta_min=1e-7
|
64 |
+
|
65 |
+
It has four cycles, each has 10 iterations. At 10th, 20th, 30th, the
|
66 |
+
scheduler will restart with the weights in restart_weights.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
optimizer (torch.nn.optimizer): Torch optimizer.
|
70 |
+
periods (list): Period for each cosine anneling cycle.
|
71 |
+
restart_weights (list): Restart weights at each restart iteration.
|
72 |
+
Default: [1].
|
73 |
+
eta_min (float): The mimimum lr. Default: 0.
|
74 |
+
last_epoch (int): Used in _LRScheduler. Default: -1.
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(self, optimizer, periods, restart_weights=(1, ), eta_min=0, last_epoch=-1):
|
78 |
+
self.periods = periods
|
79 |
+
self.restart_weights = restart_weights
|
80 |
+
self.eta_min = eta_min
|
81 |
+
assert (len(self.periods) == len(
|
82 |
+
self.restart_weights)), 'periods and restart_weights should have the same length.'
|
83 |
+
self.cumulative_period = [sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))]
|
84 |
+
super(CosineAnnealingRestartLR, self).__init__(optimizer, last_epoch)
|
85 |
+
|
86 |
+
def get_lr(self):
|
87 |
+
idx = get_position_from_periods(self.last_epoch, self.cumulative_period)
|
88 |
+
current_weight = self.restart_weights[idx]
|
89 |
+
nearest_restart = 0 if idx == 0 else self.cumulative_period[idx - 1]
|
90 |
+
current_period = self.periods[idx]
|
91 |
+
|
92 |
+
return [
|
93 |
+
self.eta_min + current_weight * 0.5 * (base_lr - self.eta_min) *
|
94 |
+
(1 + math.cos(math.pi * ((self.last_epoch - nearest_restart) / current_period)))
|
95 |
+
for base_lr in self.base_lrs
|
96 |
+
]
|