sczhou commited on
Commit
e878192
·
1 Parent(s): 68fdbb1

fix some bugs for training.

Browse files
basicsr/data/ffhq_blind_dataset.py CHANGED
@@ -232,7 +232,7 @@ class FFHQBlindDataset(data.Dataset):
232
  # jpeg
233
  if self.jpeg_range is not None:
234
  jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
235
- encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
236
  _, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
237
  img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
238
 
 
232
  # jpeg
233
  if self.jpeg_range is not None:
234
  jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
235
+ encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), int(jpeg_p)]
236
  _, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
237
  img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
238
 
basicsr/data/ffhq_blind_joint_dataset.py CHANGED
@@ -224,7 +224,7 @@ class FFHQBlindJointDataset(data.Dataset):
224
  # jpeg
225
  if self.jpeg_range is not None:
226
  jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
227
- encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
228
  _, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
229
  img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
230
 
@@ -267,7 +267,7 @@ class FFHQBlindJointDataset(data.Dataset):
267
  # jpeg
268
  if self.jpeg_range_large is not None:
269
  jpeg_p = np.random.uniform(self.jpeg_range_large[0], self.jpeg_range_large[1])
270
- encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
271
  _, encimg = cv2.imencode('.jpg', img_in_large * 255., encode_param)
272
  img_in_large = np.float32(cv2.imdecode(encimg, 1)) / 255.
273
 
 
224
  # jpeg
225
  if self.jpeg_range is not None:
226
  jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
227
+ encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), int(jpeg_p)]
228
  _, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
229
  img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
230
 
 
267
  # jpeg
268
  if self.jpeg_range_large is not None:
269
  jpeg_p = np.random.uniform(self.jpeg_range_large[0], self.jpeg_range_large[1])
270
+ encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), int(jpeg_p)]
271
  _, encimg = cv2.imencode('.jpg', img_in_large * 255., encode_param)
272
  img_in_large = np.float32(cv2.imdecode(encimg, 1)) / 255.
273
 
options/CodeFormer_stage3.yml CHANGED
@@ -85,7 +85,7 @@ network_d:
85
  path:
86
  pretrain_network_g: './experiments/pretrained_models/CodeFormer_stage2/net_g_latest.pth' # pretrained G model in StageII
87
  param_key_g: params_ema
88
- strict_load_g: true
89
  pretrain_network_d: './experiments/pretrained_models/CodeFormer_stage2/net_d_latest.pth' # pretrained D model in StageII
90
  resume_state: ~
91
 
 
85
  path:
86
  pretrain_network_g: './experiments/pretrained_models/CodeFormer_stage2/net_g_latest.pth' # pretrained G model in StageII
87
  param_key_g: params_ema
88
+ strict_load_g: false
89
  pretrain_network_d: './experiments/pretrained_models/CodeFormer_stage2/net_d_latest.pth' # pretrained D model in StageII
90
  resume_state: ~
91