sczhou commited on
Commit
efc0a3c
·
1 Parent(s): 8e5f81b

add sound back into enhanced video (#61)

Browse files
README.md CHANGED
@@ -81,12 +81,12 @@ python basicsr/setup.py develop
81
  ### Quick Inference
82
 
83
  #### Download Pre-trained Models:
84
- Download the facelib pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by runing the following command.
85
  ```
86
  python scripts/download_pretrained_models.py facelib
87
  ```
88
 
89
- Download the CodeFormer pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by runing the following command.
90
  ```
91
  python scripts/download_pretrained_models.py CodeFormer
92
  ```
@@ -115,8 +115,7 @@ python inference_codeformer.py -w 0.7 --input_path [image folder/image path]
115
  :clapper: Video Enhancement
116
  ```
117
  # For video clips
118
- # Set frame rate of saved video via '--save_video_fps 24'
119
- python inference_codeformer.py --bg_upsampler realesrgan --face_upsample -w 1.0 --input_path [video path] --save_video_fps 24
120
  ```
121
 
122
 
 
81
  ### Quick Inference
82
 
83
  #### Download Pre-trained Models:
84
+ Download the facelib pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by running the following command.
85
  ```
86
  python scripts/download_pretrained_models.py facelib
87
  ```
88
 
89
+ Download the CodeFormer pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by running the following command.
90
  ```
91
  python scripts/download_pretrained_models.py CodeFormer
92
  ```
 
115
  :clapper: Video Enhancement
116
  ```
117
  # For video clips
118
+ python inference_codeformer.py --bg_upsampler realesrgan --face_upsample -w 1.0 --input_path [video path]
 
119
  ```
120
 
121
 
basicsr/utils/video_util.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ The code is modified from the Real-ESRGAN:
3
+ https://github.com/xinntao/Real-ESRGAN/blob/master/inference_realesrgan_video.py
4
+
5
+ '''
6
+ import cv2
7
+ import sys
8
+ import numpy as np
9
+
10
+ try:
11
+ import ffmpeg
12
+ except ImportError:
13
+ import pip
14
+ pip.main(['install', '--user', 'ffmpeg-python'])
15
+ import ffmpeg
16
+
17
+ def get_video_meta_info(video_path):
18
+ ret = {}
19
+ probe = ffmpeg.probe(video_path)
20
+ video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
21
+ has_audio = any(stream['codec_type'] == 'audio' for stream in probe['streams'])
22
+ ret['width'] = video_streams[0]['width']
23
+ ret['height'] = video_streams[0]['height']
24
+ ret['fps'] = eval(video_streams[0]['avg_frame_rate'])
25
+ ret['audio'] = ffmpeg.input(video_path).audio if has_audio else None
26
+ ret['nb_frames'] = int(video_streams[0]['nb_frames'])
27
+ return ret
28
+
29
+ class VideoReader:
30
+ def __init__(self, video_path):
31
+ self.paths = [] # for image&folder type
32
+ self.audio = None
33
+ self.stream_reader = (
34
+ ffmpeg.input(video_path).output('pipe:', format='rawvideo', pix_fmt='bgr24',
35
+ loglevel='error').run_async(
36
+ pipe_stdin=True, pipe_stdout=True, cmd='ffmpeg'))
37
+ meta = get_video_meta_info(video_path)
38
+ self.width = meta['width']
39
+ self.height = meta['height']
40
+ self.input_fps = meta['fps']
41
+ self.audio = meta['audio']
42
+ self.nb_frames = meta['nb_frames']
43
+
44
+ self.idx = 0
45
+
46
+ def get_resolution(self):
47
+ return self.height, self.width
48
+
49
+ def get_fps(self):
50
+ if self.input_fps is not None:
51
+ return self.input_fps
52
+ return 24
53
+
54
+ def get_audio(self):
55
+ return self.audio
56
+
57
+ def __len__(self):
58
+ return self.nb_frames
59
+
60
+ def get_frame_from_stream(self):
61
+ img_bytes = self.stream_reader.stdout.read(self.width * self.height * 3) # 3 bytes for one pixel
62
+ if not img_bytes:
63
+ return None
64
+ img = np.frombuffer(img_bytes, np.uint8).reshape([self.height, self.width, 3])
65
+ return img
66
+
67
+ def get_frame_from_list(self):
68
+ if self.idx >= self.nb_frames:
69
+ return None
70
+ img = cv2.imread(self.paths[self.idx])
71
+ self.idx += 1
72
+ return img
73
+
74
+ def get_frame(self):
75
+ return self.get_frame_from_stream()
76
+
77
+
78
+ def close(self):
79
+ self.stream_reader.stdin.close()
80
+ self.stream_reader.wait()
81
+
82
+
83
+ class VideoWriter:
84
+ def __init__(self, video_save_path, height, width, fps, audio):
85
+ if height > 2160:
86
+ print('You are generating video that is larger than 4K, which will be very slow due to IO speed.',
87
+ 'We highly recommend to decrease the outscale(aka, -s).')
88
+ if audio is not None:
89
+ self.stream_writer = (
90
+ ffmpeg.input('pipe:', format='rawvideo', pix_fmt='bgr24', s=f'{width}x{height}',
91
+ framerate=fps).output(
92
+ audio,
93
+ video_save_path,
94
+ pix_fmt='yuv420p',
95
+ vcodec='libx264',
96
+ loglevel='error',
97
+ acodec='copy').overwrite_output().run_async(
98
+ pipe_stdin=True, pipe_stdout=True, cmd='ffmpeg'))
99
+ else:
100
+ self.stream_writer = (
101
+ ffmpeg.input('pipe:', format='rawvideo', pix_fmt='bgr24', s=f'{width}x{height}',
102
+ framerate=fps).output(
103
+ video_save_path, pix_fmt='yuv420p', vcodec='libx264',
104
+ loglevel='error').overwrite_output().run_async(
105
+ pipe_stdin=True, pipe_stdout=True, cmd='ffmpeg'))
106
+
107
+ def write_frame(self, frame):
108
+ try:
109
+ frame = frame.astype(np.uint8).tobytes()
110
+ self.stream_writer.stdin.write(frame)
111
+ except BrokenPipeError:
112
+ print('Please re-install ffmpeg and libx264 by running\n',
113
+ '\t$ conda install -c conda-forge ffmpeg\n',
114
+ '\t$ conda install -c conda-forge x264')
115
+ sys.exit(0)
116
+
117
+ def close(self):
118
+ self.stream_writer.stdin.close()
119
+ self.stream_writer.wait()
facelib/utils/misc.py CHANGED
@@ -7,13 +7,13 @@ import torch
7
  from torch.hub import download_url_to_file, get_dir
8
  from urllib.parse import urlparse
9
  # from basicsr.utils.download_util import download_file_from_google_drive
10
- import gdown
11
-
12
 
13
  ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
14
 
15
 
16
  def download_pretrained_models(file_ids, save_path_root):
 
 
17
  os.makedirs(save_path_root, exist_ok=True)
18
 
19
  for file_name, file_id in file_ids.items():
 
7
  from torch.hub import download_url_to_file, get_dir
8
  from urllib.parse import urlparse
9
  # from basicsr.utils.download_util import download_file_from_google_drive
 
 
10
 
11
  ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
12
 
13
 
14
  def download_pretrained_models(file_ids, save_path_root):
15
+ import gdown
16
+
17
  os.makedirs(save_path_root, exist_ok=True)
18
 
19
  for file_name, file_id in file_ids.items():
inference_codeformer.py CHANGED
@@ -72,7 +72,7 @@ if __name__ == '__main__':
72
  parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False')
73
  parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
74
  parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None')
75
- parser.add_argument('--save_video_fps', type=int, default=24, help='Frame rate for saving video. Default: 24')
76
 
77
  args = parser.parse_args()
78
 
@@ -83,15 +83,19 @@ if __name__ == '__main__':
83
  input_img_list = [args.input_path]
84
  result_root = f'results/test_img_{w}'
85
  elif args.input_path.endswith(('mp4', 'mov', 'avi')): # input video path
 
86
  input_img_list = []
87
- vidcap = cv2.VideoCapture(args.input_path)
88
- success, image = vidcap.read()
89
- while success:
90
  input_img_list.append(image)
91
- success, image = vidcap.read()
92
- input_video = True
 
93
  video_name = os.path.basename(args.input_path)[:-4]
94
  result_root = f'results/{video_name}_{w}'
 
 
95
  else: # input img folder
96
  if args.input_path.endswith('/'): # solve when path ends with /
97
  args.input_path = args.input_path[:-1]
@@ -241,6 +245,7 @@ if __name__ == '__main__':
241
 
242
  # save enhanced video
243
  if input_video:
 
244
  # load images
245
  video_frames = []
246
  img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g')))
@@ -248,14 +253,14 @@ if __name__ == '__main__':
248
  img = cv2.imread(img_path)
249
  video_frames.append(img)
250
  # write images to video
251
- h, w = video_frames[0].shape[:2]
252
  if args.suffix is not None:
253
  video_name = f'{video_name}_{args.suffix}.png'
254
  save_restore_path = os.path.join(result_root, f'{video_name}.mp4')
255
- writer = cv2.VideoWriter(save_restore_path, cv2.VideoWriter_fourcc(*"mp4v"),
256
- args.save_video_fps, (w, h))
257
  for f in video_frames:
258
- writer.write(f)
259
- writer.release()
260
 
261
  print(f'\nAll results are saved in {result_root}')
 
72
  parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False')
73
  parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
74
  parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None')
75
+ parser.add_argument('--save_video_fps', type=float, default=None, help='Frame rate for saving video. Default: None')
76
 
77
  args = parser.parse_args()
78
 
 
83
  input_img_list = [args.input_path]
84
  result_root = f'results/test_img_{w}'
85
  elif args.input_path.endswith(('mp4', 'mov', 'avi')): # input video path
86
+ from basicsr.utils.video_util import VideoReader, VideoWriter
87
  input_img_list = []
88
+ vidreader = VideoReader(args.input_path)
89
+ image = vidreader.get_frame()
90
+ while image is not None:
91
  input_img_list.append(image)
92
+ image = vidreader.get_frame()
93
+ audio = vidreader.get_audio()
94
+ fps = vidreader.get_fps() if args.save_video_fps is None else args.save_video_fps
95
  video_name = os.path.basename(args.input_path)[:-4]
96
  result_root = f'results/{video_name}_{w}'
97
+ input_video = True
98
+ vidreader.close()
99
  else: # input img folder
100
  if args.input_path.endswith('/'): # solve when path ends with /
101
  args.input_path = args.input_path[:-1]
 
245
 
246
  # save enhanced video
247
  if input_video:
248
+ print('Video Saving...')
249
  # load images
250
  video_frames = []
251
  img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g')))
 
253
  img = cv2.imread(img_path)
254
  video_frames.append(img)
255
  # write images to video
256
+ height, width = video_frames[0].shape[:2]
257
  if args.suffix is not None:
258
  video_name = f'{video_name}_{args.suffix}.png'
259
  save_restore_path = os.path.join(result_root, f'{video_name}.mp4')
260
+ vidwriter = VideoWriter(save_restore_path, height, width, fps, audio)
261
+
262
  for f in video_frames:
263
+ vidwriter.write_frame(f)
264
+ vidwriter.close()
265
 
266
  print(f'\nAll results are saved in {result_root}')
requirements.txt CHANGED
@@ -15,6 +15,4 @@ tqdm
15
  yapf
16
  lpips
17
  gdown # supports downloading the large file from Google Drive
18
- # cmake
19
- # dlib
20
- # conda install -c conda-forge dlib
 
15
  yapf
16
  lpips
17
  gdown # supports downloading the large file from Google Drive
18
+ ffmpeg-python