Spaces:
Runtime error
Runtime error
fix some bugs in training code.
Browse files- .gitignore +4 -0
- basicsr/data/ffhq_blind_dataset.py +299 -0
- basicsr/data/ffhq_blind_joint_dataset.py +1 -4
- basicsr/models/codeformer_idx_model.py +6 -2
- basicsr/models/codeformer_joint_model.py +7 -3
- options/CodeFormer_colorization.yml +10 -2
- options/CodeFormer_inpainting.yml +10 -2
- options/CodeFormer_stage2.yml +10 -2
- options/CodeFormer_stage3.yml +10 -3
.gitignore
CHANGED
@@ -123,5 +123,9 @@ venv.bak/
|
|
123 |
|
124 |
# project
|
125 |
results/
|
|
|
|
|
|
|
|
|
126 |
*_old*
|
127 |
|
|
|
123 |
|
124 |
# project
|
125 |
results/
|
126 |
+
experiments/
|
127 |
+
tb_logger/
|
128 |
+
run.sh
|
129 |
+
*debug*
|
130 |
*_old*
|
131 |
|
basicsr/data/ffhq_blind_dataset.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import math
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import os.path as osp
|
6 |
+
from scipy.io import loadmat
|
7 |
+
from PIL import Image
|
8 |
+
import torch
|
9 |
+
import torch.utils.data as data
|
10 |
+
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast,
|
11 |
+
adjust_hue, adjust_saturation, normalize)
|
12 |
+
from basicsr.data import gaussian_kernels as gaussian_kernels
|
13 |
+
from basicsr.data.transforms import augment
|
14 |
+
from basicsr.data.data_util import paths_from_folder, brush_stroke_mask, random_ff_mask
|
15 |
+
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
|
16 |
+
from basicsr.utils.registry import DATASET_REGISTRY
|
17 |
+
|
18 |
+
@DATASET_REGISTRY.register()
|
19 |
+
class FFHQBlindDataset(data.Dataset):
|
20 |
+
|
21 |
+
def __init__(self, opt):
|
22 |
+
super(FFHQBlindDataset, self).__init__()
|
23 |
+
logger = get_root_logger()
|
24 |
+
self.opt = opt
|
25 |
+
# file client (io backend)
|
26 |
+
self.file_client = None
|
27 |
+
self.io_backend_opt = opt['io_backend']
|
28 |
+
|
29 |
+
self.gt_folder = opt['dataroot_gt']
|
30 |
+
self.gt_size = opt.get('gt_size', 512)
|
31 |
+
self.in_size = opt.get('in_size', 512)
|
32 |
+
assert self.gt_size >= self.in_size, 'Wrong setting.'
|
33 |
+
|
34 |
+
self.mean = opt.get('mean', [0.5, 0.5, 0.5])
|
35 |
+
self.std = opt.get('std', [0.5, 0.5, 0.5])
|
36 |
+
|
37 |
+
self.component_path = opt.get('component_path', None)
|
38 |
+
self.latent_gt_path = opt.get('latent_gt_path', None)
|
39 |
+
|
40 |
+
if self.component_path is not None:
|
41 |
+
self.crop_components = True
|
42 |
+
self.components_dict = torch.load(self.component_path)
|
43 |
+
self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1.4)
|
44 |
+
self.nose_enlarge_ratio = opt.get('nose_enlarge_ratio', 1.1)
|
45 |
+
self.mouth_enlarge_ratio = opt.get('mouth_enlarge_ratio', 1.3)
|
46 |
+
else:
|
47 |
+
self.crop_components = False
|
48 |
+
|
49 |
+
if self.latent_gt_path is not None:
|
50 |
+
self.load_latent_gt = True
|
51 |
+
self.latent_gt_dict = torch.load(self.latent_gt_path)
|
52 |
+
else:
|
53 |
+
self.load_latent_gt = False
|
54 |
+
|
55 |
+
if self.io_backend_opt['type'] == 'lmdb':
|
56 |
+
self.io_backend_opt['db_paths'] = self.gt_folder
|
57 |
+
if not self.gt_folder.endswith('.lmdb'):
|
58 |
+
raise ValueError("'dataroot_gt' should end with '.lmdb', "f'but received {self.gt_folder}')
|
59 |
+
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
|
60 |
+
self.paths = [line.split('.')[0] for line in fin]
|
61 |
+
else:
|
62 |
+
self.paths = paths_from_folder(self.gt_folder)
|
63 |
+
|
64 |
+
# inpainting mask
|
65 |
+
self.gen_inpaint_mask = opt.get('gen_inpaint_mask', False)
|
66 |
+
if self.gen_inpaint_mask:
|
67 |
+
logger.info(f'generate mask ...')
|
68 |
+
# self.mask_max_angle = opt.get('mask_max_angle', 10)
|
69 |
+
# self.mask_max_len = opt.get('mask_max_len', 150)
|
70 |
+
# self.mask_max_width = opt.get('mask_max_width', 50)
|
71 |
+
# self.mask_draw_times = opt.get('mask_draw_times', 10)
|
72 |
+
# # print
|
73 |
+
# logger.info(f'mask_max_angle: {self.mask_max_angle}')
|
74 |
+
# logger.info(f'mask_max_len: {self.mask_max_len}')
|
75 |
+
# logger.info(f'mask_max_width: {self.mask_max_width}')
|
76 |
+
# logger.info(f'mask_draw_times: {self.mask_draw_times}')
|
77 |
+
|
78 |
+
# perform corrupt
|
79 |
+
self.use_corrupt = opt.get('use_corrupt', True)
|
80 |
+
self.use_motion_kernel = False
|
81 |
+
# self.use_motion_kernel = opt.get('use_motion_kernel', True)
|
82 |
+
|
83 |
+
if self.use_motion_kernel:
|
84 |
+
self.motion_kernel_prob = opt.get('motion_kernel_prob', 0.001)
|
85 |
+
motion_kernel_path = opt.get('motion_kernel_path', 'basicsr/data/motion-blur-kernels-32.pth')
|
86 |
+
self.motion_kernels = torch.load(motion_kernel_path)
|
87 |
+
|
88 |
+
if self.use_corrupt and not self.gen_inpaint_mask:
|
89 |
+
# degradation configurations
|
90 |
+
self.blur_kernel_size = opt['blur_kernel_size']
|
91 |
+
self.blur_sigma = opt['blur_sigma']
|
92 |
+
self.kernel_list = opt['kernel_list']
|
93 |
+
self.kernel_prob = opt['kernel_prob']
|
94 |
+
self.downsample_range = opt['downsample_range']
|
95 |
+
self.noise_range = opt['noise_range']
|
96 |
+
self.jpeg_range = opt['jpeg_range']
|
97 |
+
# print
|
98 |
+
logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]')
|
99 |
+
logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]')
|
100 |
+
logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]')
|
101 |
+
logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]')
|
102 |
+
|
103 |
+
# color jitter
|
104 |
+
self.color_jitter_prob = opt.get('color_jitter_prob', None)
|
105 |
+
self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob', None)
|
106 |
+
self.color_jitter_shift = opt.get('color_jitter_shift', 20)
|
107 |
+
if self.color_jitter_prob is not None:
|
108 |
+
logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}')
|
109 |
+
|
110 |
+
# to gray
|
111 |
+
self.gray_prob = opt.get('gray_prob', 0.0)
|
112 |
+
if self.gray_prob is not None:
|
113 |
+
logger.info(f'Use random gray. Prob: {self.gray_prob}')
|
114 |
+
self.color_jitter_shift /= 255.
|
115 |
+
|
116 |
+
@staticmethod
|
117 |
+
def color_jitter(img, shift):
|
118 |
+
"""jitter color: randomly jitter the RGB values, in numpy formats"""
|
119 |
+
jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)
|
120 |
+
img = img + jitter_val
|
121 |
+
img = np.clip(img, 0, 1)
|
122 |
+
return img
|
123 |
+
|
124 |
+
@staticmethod
|
125 |
+
def color_jitter_pt(img, brightness, contrast, saturation, hue):
|
126 |
+
"""jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats"""
|
127 |
+
fn_idx = torch.randperm(4)
|
128 |
+
for fn_id in fn_idx:
|
129 |
+
if fn_id == 0 and brightness is not None:
|
130 |
+
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
|
131 |
+
img = adjust_brightness(img, brightness_factor)
|
132 |
+
|
133 |
+
if fn_id == 1 and contrast is not None:
|
134 |
+
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
|
135 |
+
img = adjust_contrast(img, contrast_factor)
|
136 |
+
|
137 |
+
if fn_id == 2 and saturation is not None:
|
138 |
+
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
|
139 |
+
img = adjust_saturation(img, saturation_factor)
|
140 |
+
|
141 |
+
if fn_id == 3 and hue is not None:
|
142 |
+
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
|
143 |
+
img = adjust_hue(img, hue_factor)
|
144 |
+
return img
|
145 |
+
|
146 |
+
|
147 |
+
def get_component_locations(self, name, status):
|
148 |
+
components_bbox = self.components_dict[name]
|
149 |
+
if status[0]: # hflip
|
150 |
+
# exchange right and left eye
|
151 |
+
tmp = components_bbox['left_eye']
|
152 |
+
components_bbox['left_eye'] = components_bbox['right_eye']
|
153 |
+
components_bbox['right_eye'] = tmp
|
154 |
+
# modify the width coordinate
|
155 |
+
components_bbox['left_eye'][0] = self.gt_size - components_bbox['left_eye'][0]
|
156 |
+
components_bbox['right_eye'][0] = self.gt_size - components_bbox['right_eye'][0]
|
157 |
+
components_bbox['nose'][0] = self.gt_size - components_bbox['nose'][0]
|
158 |
+
components_bbox['mouth'][0] = self.gt_size - components_bbox['mouth'][0]
|
159 |
+
|
160 |
+
locations_gt = {}
|
161 |
+
locations_in = {}
|
162 |
+
for part in ['left_eye', 'right_eye', 'nose', 'mouth']:
|
163 |
+
mean = components_bbox[part][0:2]
|
164 |
+
half_len = components_bbox[part][2]
|
165 |
+
if 'eye' in part:
|
166 |
+
half_len *= self.eye_enlarge_ratio
|
167 |
+
elif part == 'nose':
|
168 |
+
half_len *= self.nose_enlarge_ratio
|
169 |
+
elif part == 'mouth':
|
170 |
+
half_len *= self.mouth_enlarge_ratio
|
171 |
+
loc = np.hstack((mean - half_len + 1, mean + half_len))
|
172 |
+
loc = torch.from_numpy(loc).float()
|
173 |
+
locations_gt[part] = loc
|
174 |
+
loc_in = loc/(self.gt_size//self.in_size)
|
175 |
+
locations_in[part] = loc_in
|
176 |
+
return locations_gt, locations_in
|
177 |
+
|
178 |
+
|
179 |
+
def __getitem__(self, index):
|
180 |
+
if self.file_client is None:
|
181 |
+
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
182 |
+
|
183 |
+
# load gt image
|
184 |
+
gt_path = self.paths[index]
|
185 |
+
name = osp.basename(gt_path)[:-4]
|
186 |
+
img_bytes = self.file_client.get(gt_path)
|
187 |
+
img_gt = imfrombytes(img_bytes, float32=True)
|
188 |
+
|
189 |
+
# random horizontal flip
|
190 |
+
img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True)
|
191 |
+
|
192 |
+
if self.load_latent_gt:
|
193 |
+
if status[0]:
|
194 |
+
latent_gt = self.latent_gt_dict['hflip'][name]
|
195 |
+
else:
|
196 |
+
latent_gt = self.latent_gt_dict['orig'][name]
|
197 |
+
|
198 |
+
if self.crop_components:
|
199 |
+
locations_gt, locations_in = self.get_component_locations(name, status)
|
200 |
+
|
201 |
+
# generate in image
|
202 |
+
img_in = img_gt
|
203 |
+
if self.use_corrupt and not self.gen_inpaint_mask:
|
204 |
+
# motion blur
|
205 |
+
if self.use_motion_kernel and random.random() < self.motion_kernel_prob:
|
206 |
+
m_i = random.randint(0,31)
|
207 |
+
k = self.motion_kernels[f'{m_i:02d}']
|
208 |
+
img_in = cv2.filter2D(img_in,-1,k)
|
209 |
+
|
210 |
+
# gaussian blur
|
211 |
+
kernel = gaussian_kernels.random_mixed_kernels(
|
212 |
+
self.kernel_list,
|
213 |
+
self.kernel_prob,
|
214 |
+
self.blur_kernel_size,
|
215 |
+
self.blur_sigma,
|
216 |
+
self.blur_sigma,
|
217 |
+
[-math.pi, math.pi],
|
218 |
+
noise_range=None)
|
219 |
+
img_in = cv2.filter2D(img_in, -1, kernel)
|
220 |
+
|
221 |
+
# downsample
|
222 |
+
scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1])
|
223 |
+
img_in = cv2.resize(img_in, (int(self.gt_size // scale), int(self.gt_size // scale)), interpolation=cv2.INTER_LINEAR)
|
224 |
+
|
225 |
+
# noise
|
226 |
+
if self.noise_range is not None:
|
227 |
+
noise_sigma = np.random.uniform(self.noise_range[0] / 255., self.noise_range[1] / 255.)
|
228 |
+
noise = np.float32(np.random.randn(*(img_in.shape))) * noise_sigma
|
229 |
+
img_in = img_in + noise
|
230 |
+
img_in = np.clip(img_in, 0, 1)
|
231 |
+
|
232 |
+
# jpeg
|
233 |
+
if self.jpeg_range is not None:
|
234 |
+
jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
|
235 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
|
236 |
+
_, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
|
237 |
+
img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
|
238 |
+
|
239 |
+
# resize to in_size
|
240 |
+
img_in = cv2.resize(img_in, (self.in_size, self.in_size), interpolation=cv2.INTER_LINEAR)
|
241 |
+
|
242 |
+
# if self.gen_inpaint_mask:
|
243 |
+
# inpaint_mask = random_ff_mask(shape=(self.gt_size,self.gt_size),
|
244 |
+
# max_angle = self.mask_max_angle, max_len = self.mask_max_len,
|
245 |
+
# max_width = self.mask_max_width, times = self.mask_draw_times)
|
246 |
+
# img_in = img_in * (1 - inpaint_mask.reshape(self.gt_size,self.gt_size,1)) + \
|
247 |
+
# 1.0 * inpaint_mask.reshape(self.gt_size,self.gt_size,1)
|
248 |
+
|
249 |
+
# inpaint_mask = torch.from_numpy(inpaint_mask).view(1,self.gt_size,self.gt_size)
|
250 |
+
|
251 |
+
if self.gen_inpaint_mask:
|
252 |
+
img_in = (img_in*255).astype('uint8')
|
253 |
+
img_in = brush_stroke_mask(Image.fromarray(img_in))
|
254 |
+
img_in = np.array(img_in) / 255.
|
255 |
+
|
256 |
+
# random color jitter (only for lq)
|
257 |
+
if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob):
|
258 |
+
img_in = self.color_jitter(img_in, self.color_jitter_shift)
|
259 |
+
# random to gray (only for lq)
|
260 |
+
if self.gray_prob and np.random.uniform() < self.gray_prob:
|
261 |
+
img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2GRAY)
|
262 |
+
img_in = np.tile(img_in[:, :, None], [1, 1, 3])
|
263 |
+
|
264 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
265 |
+
img_in, img_gt = img2tensor([img_in, img_gt], bgr2rgb=True, float32=True)
|
266 |
+
|
267 |
+
# random color jitter (pytorch version) (only for lq)
|
268 |
+
if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob):
|
269 |
+
brightness = self.opt.get('brightness', (0.5, 1.5))
|
270 |
+
contrast = self.opt.get('contrast', (0.5, 1.5))
|
271 |
+
saturation = self.opt.get('saturation', (0, 1.5))
|
272 |
+
hue = self.opt.get('hue', (-0.1, 0.1))
|
273 |
+
img_in = self.color_jitter_pt(img_in, brightness, contrast, saturation, hue)
|
274 |
+
|
275 |
+
# round and clip
|
276 |
+
img_in = np.clip((img_in * 255.0).round(), 0, 255) / 255.
|
277 |
+
|
278 |
+
# Set vgg range_norm=True if use the normalization here
|
279 |
+
# normalize
|
280 |
+
normalize(img_in, self.mean, self.std, inplace=True)
|
281 |
+
normalize(img_gt, self.mean, self.std, inplace=True)
|
282 |
+
|
283 |
+
return_dict = {'in': img_in, 'gt': img_gt, 'gt_path': gt_path}
|
284 |
+
|
285 |
+
if self.crop_components:
|
286 |
+
return_dict['locations_in'] = locations_in
|
287 |
+
return_dict['locations_gt'] = locations_gt
|
288 |
+
|
289 |
+
if self.load_latent_gt:
|
290 |
+
return_dict['latent_gt'] = latent_gt
|
291 |
+
|
292 |
+
# if self.gen_inpaint_mask:
|
293 |
+
# return_dict['inpaint_mask'] = inpaint_mask
|
294 |
+
|
295 |
+
return return_dict
|
296 |
+
|
297 |
+
|
298 |
+
def __len__(self):
|
299 |
+
return len(self.paths)
|
basicsr/data/ffhq_blind_joint_dataset.py
CHANGED
@@ -4,17 +4,14 @@ import random
|
|
4 |
import numpy as np
|
5 |
import os.path as osp
|
6 |
from scipy.io import loadmat
|
7 |
-
from PIL import Image, ImageDraw
|
8 |
import torch
|
9 |
import torch.utils.data as data
|
10 |
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast,
|
11 |
adjust_hue, adjust_saturation, normalize)
|
12 |
from basicsr.data import gaussian_kernels as gaussian_kernels
|
|
|
13 |
from basicsr.data.data_util import paths_from_folder
|
14 |
-
from basicsr.data.transforms import augment, img_rotate
|
15 |
-
from basicsr.metrics.psnr_ssim import calculate_psnr
|
16 |
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
|
17 |
-
from basicsr.utils.matlab_functions import imresize
|
18 |
from basicsr.utils.registry import DATASET_REGISTRY
|
19 |
|
20 |
@DATASET_REGISTRY.register()
|
|
|
4 |
import numpy as np
|
5 |
import os.path as osp
|
6 |
from scipy.io import loadmat
|
|
|
7 |
import torch
|
8 |
import torch.utils.data as data
|
9 |
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast,
|
10 |
adjust_hue, adjust_saturation, normalize)
|
11 |
from basicsr.data import gaussian_kernels as gaussian_kernels
|
12 |
+
from basicsr.data.transforms import augment
|
13 |
from basicsr.data.data_util import paths_from_folder
|
|
|
|
|
14 |
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
|
|
|
15 |
from basicsr.utils.registry import DATASET_REGISTRY
|
16 |
|
17 |
@DATASET_REGISTRY.register()
|
basicsr/models/codeformer_idx_model.py
CHANGED
@@ -43,14 +43,18 @@ class CodeFormerIdxModel(SRModel):
|
|
43 |
self.model_ema(0) # copy net_g weight
|
44 |
self.net_g_ema.eval()
|
45 |
|
46 |
-
if self.opt
|
|
|
|
|
47 |
self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device)
|
48 |
self.hq_vqgan_fix.eval()
|
49 |
self.generate_idx_gt = True
|
50 |
for param in self.hq_vqgan_fix.parameters():
|
51 |
param.requires_grad = False
|
52 |
else:
|
53 |
-
|
|
|
|
|
54 |
|
55 |
self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True)
|
56 |
self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
|
|
|
43 |
self.model_ema(0) # copy net_g weight
|
44 |
self.net_g_ema.eval()
|
45 |
|
46 |
+
if self.opt['datasets']['train'].get('latent_gt_path', None) is not None:
|
47 |
+
self.generate_idx_gt = False
|
48 |
+
elif self.opt.get('network_vqgan', None) is not None:
|
49 |
self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device)
|
50 |
self.hq_vqgan_fix.eval()
|
51 |
self.generate_idx_gt = True
|
52 |
for param in self.hq_vqgan_fix.parameters():
|
53 |
param.requires_grad = False
|
54 |
else:
|
55 |
+
raise NotImplementedError(f'Shoule have network_vqgan config or pre-calculated latent code.')
|
56 |
+
|
57 |
+
logger.info(f'Need to generate latent GT code: {self.generate_idx_gt}')
|
58 |
|
59 |
self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True)
|
60 |
self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
|
basicsr/models/codeformer_joint_model.py
CHANGED
@@ -46,15 +46,19 @@ class CodeFormerJointModel(SRModel):
|
|
46 |
self.model_ema(0) # copy net_g weight
|
47 |
self.net_g_ema.eval()
|
48 |
|
49 |
-
if self.opt
|
|
|
|
|
50 |
self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device)
|
51 |
self.hq_vqgan_fix.eval()
|
52 |
self.generate_idx_gt = True
|
53 |
for param in self.hq_vqgan_fix.parameters():
|
54 |
param.requires_grad = False
|
55 |
else:
|
56 |
-
|
57 |
-
|
|
|
|
|
58 |
self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True)
|
59 |
self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
|
60 |
self.cross_entropy_loss = train_opt.get('cross_entropy_loss', True)
|
|
|
46 |
self.model_ema(0) # copy net_g weight
|
47 |
self.net_g_ema.eval()
|
48 |
|
49 |
+
if self.opt['datasets']['train'].get('latent_gt_path', None) is not None:
|
50 |
+
self.generate_idx_gt = False
|
51 |
+
elif self.opt.get('network_vqgan', None) is not None:
|
52 |
self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device)
|
53 |
self.hq_vqgan_fix.eval()
|
54 |
self.generate_idx_gt = True
|
55 |
for param in self.hq_vqgan_fix.parameters():
|
56 |
param.requires_grad = False
|
57 |
else:
|
58 |
+
raise NotImplementedError(f'Shoule have network_vqgan config or pre-calculated latent code.')
|
59 |
+
|
60 |
+
logger.info(f'Need to generate latent GT code: {self.generate_idx_gt}')
|
61 |
+
|
62 |
self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True)
|
63 |
self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
|
64 |
self.cross_entropy_loss = train_opt.get('cross_entropy_loss', True)
|
options/CodeFormer_colorization.yml
CHANGED
@@ -20,7 +20,6 @@ datasets:
|
|
20 |
std: [0.5, 0.5, 0.5]
|
21 |
use_hflip: true
|
22 |
use_corrupt: true
|
23 |
-
latent_gt_path: ~
|
24 |
|
25 |
# large degradation in stageII
|
26 |
blur_kernel_size: 41
|
@@ -39,7 +38,8 @@ datasets:
|
|
39 |
color_jitter_pt_prob: 0.3
|
40 |
gray_prob: 0.01
|
41 |
|
42 |
-
latent_gt_path:
|
|
|
43 |
|
44 |
# data loader
|
45 |
num_worker_per_gpu: 2
|
@@ -69,6 +69,14 @@ network_g:
|
|
69 |
fix_modules: ['quantize','generator']
|
70 |
vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
# path
|
73 |
path:
|
74 |
pretrain_network_g: ~
|
|
|
20 |
std: [0.5, 0.5, 0.5]
|
21 |
use_hflip: true
|
22 |
use_corrupt: true
|
|
|
23 |
|
24 |
# large degradation in stageII
|
25 |
blur_kernel_size: 41
|
|
|
38 |
color_jitter_pt_prob: 0.3
|
39 |
gray_prob: 0.01
|
40 |
|
41 |
+
latent_gt_path: ~ # without pre-calculated latent code
|
42 |
+
# latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
|
43 |
|
44 |
# data loader
|
45 |
num_worker_per_gpu: 2
|
|
|
69 |
fix_modules: ['quantize','generator']
|
70 |
vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
|
71 |
|
72 |
+
network_vqgan: # this config is needed if no pre-calculated latent
|
73 |
+
type: VQAutoEncoder
|
74 |
+
img_size: 512
|
75 |
+
nf: 64
|
76 |
+
ch_mult: [1, 2, 2, 4, 4, 8]
|
77 |
+
quantizer: 'nearest'
|
78 |
+
codebook_size: 1024
|
79 |
+
|
80 |
# path
|
81 |
path:
|
82 |
pretrain_network_g: ~
|
options/CodeFormer_inpainting.yml
CHANGED
@@ -22,8 +22,8 @@ datasets:
|
|
22 |
use_corrupt: false
|
23 |
gen_inpaint_mask: true
|
24 |
|
25 |
-
|
26 |
-
latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
|
27 |
|
28 |
# data loader
|
29 |
num_worker_per_gpu: 2
|
@@ -53,6 +53,14 @@ network_g:
|
|
53 |
fix_modules: ['quantize','generator']
|
54 |
vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
network_d:
|
57 |
type: VQGANDiscriminator
|
58 |
nc: 3
|
|
|
22 |
use_corrupt: false
|
23 |
gen_inpaint_mask: true
|
24 |
|
25 |
+
latent_gt_path: ~ # without pre-calculated latent code
|
26 |
+
# latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
|
27 |
|
28 |
# data loader
|
29 |
num_worker_per_gpu: 2
|
|
|
53 |
fix_modules: ['quantize','generator']
|
54 |
vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
|
55 |
|
56 |
+
network_vqgan: # this config is needed if no pre-calculated latent
|
57 |
+
type: VQAutoEncoder
|
58 |
+
img_size: 512
|
59 |
+
nf: 64
|
60 |
+
ch_mult: [1, 2, 2, 4, 4, 8]
|
61 |
+
quantizer: 'nearest'
|
62 |
+
codebook_size: 1024
|
63 |
+
|
64 |
network_d:
|
65 |
type: VQGANDiscriminator
|
66 |
nc: 3
|
options/CodeFormer_stage2.yml
CHANGED
@@ -20,7 +20,6 @@ datasets:
|
|
20 |
std: [0.5, 0.5, 0.5]
|
21 |
use_hflip: true
|
22 |
use_corrupt: true
|
23 |
-
latent_gt_path: ~
|
24 |
|
25 |
# large degradation in stageII
|
26 |
blur_kernel_size: 41
|
@@ -33,7 +32,8 @@ datasets:
|
|
33 |
noise_range: [0, 20]
|
34 |
jpeg_range: [30, 80]
|
35 |
|
36 |
-
latent_gt_path:
|
|
|
37 |
|
38 |
# data loader
|
39 |
num_worker_per_gpu: 2
|
@@ -63,6 +63,14 @@ network_g:
|
|
63 |
fix_modules: ['quantize','generator']
|
64 |
vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
# path
|
67 |
path:
|
68 |
pretrain_network_g: ~
|
|
|
20 |
std: [0.5, 0.5, 0.5]
|
21 |
use_hflip: true
|
22 |
use_corrupt: true
|
|
|
23 |
|
24 |
# large degradation in stageII
|
25 |
blur_kernel_size: 41
|
|
|
32 |
noise_range: [0, 20]
|
33 |
jpeg_range: [30, 80]
|
34 |
|
35 |
+
latent_gt_path: ~ # without pre-calculated latent code
|
36 |
+
# latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
|
37 |
|
38 |
# data loader
|
39 |
num_worker_per_gpu: 2
|
|
|
63 |
fix_modules: ['quantize','generator']
|
64 |
vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
|
65 |
|
66 |
+
network_vqgan: # this config is needed if no pre-calculated latent
|
67 |
+
type: VQAutoEncoder
|
68 |
+
img_size: 512
|
69 |
+
nf: 64
|
70 |
+
ch_mult: [1, 2, 2, 4, 4, 8]
|
71 |
+
quantizer: 'nearest'
|
72 |
+
codebook_size: 1024
|
73 |
+
|
74 |
# path
|
75 |
path:
|
76 |
pretrain_network_g: ~
|
options/CodeFormer_stage3.yml
CHANGED
@@ -20,7 +20,6 @@ datasets:
|
|
20 |
std: [0.5, 0.5, 0.5]
|
21 |
use_hflip: true
|
22 |
use_corrupt: true
|
23 |
-
latent_gt_path: ~
|
24 |
|
25 |
blur_kernel_size: 41
|
26 |
use_motion_kernel: false
|
@@ -38,8 +37,8 @@ datasets:
|
|
38 |
noise_range_large: [0, 20]
|
39 |
jpeg_range_large: [30, 80]
|
40 |
|
41 |
-
|
42 |
-
latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
|
43 |
|
44 |
# data loader
|
45 |
num_worker_per_gpu: 1
|
@@ -68,6 +67,14 @@ network_g:
|
|
68 |
connect_list: ['32', '64', '128', '256']
|
69 |
fix_modules: ['quantize','generator']
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
network_d:
|
72 |
type: VQGANDiscriminator
|
73 |
nc: 3
|
|
|
20 |
std: [0.5, 0.5, 0.5]
|
21 |
use_hflip: true
|
22 |
use_corrupt: true
|
|
|
23 |
|
24 |
blur_kernel_size: 41
|
25 |
use_motion_kernel: false
|
|
|
37 |
noise_range_large: [0, 20]
|
38 |
jpeg_range_large: [30, 80]
|
39 |
|
40 |
+
latent_gt_path: ~ # without pre-calculated latent code
|
41 |
+
# latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
|
42 |
|
43 |
# data loader
|
44 |
num_worker_per_gpu: 1
|
|
|
67 |
connect_list: ['32', '64', '128', '256']
|
68 |
fix_modules: ['quantize','generator']
|
69 |
|
70 |
+
network_vqgan: # this config is needed if no pre-calculated latent
|
71 |
+
type: VQAutoEncoder
|
72 |
+
img_size: 512
|
73 |
+
nf: 64
|
74 |
+
ch_mult: [1, 2, 2, 4, 4, 8]
|
75 |
+
quantizer: 'nearest'
|
76 |
+
codebook_size: 1024
|
77 |
+
|
78 |
network_d:
|
79 |
type: VQGANDiscriminator
|
80 |
nc: 3
|