File size: 10,912 Bytes
231edce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import math
import numpy as np
import re
import torch
import torch.nn as nn
import torch.nn.functional as F

from pytorchvideo.models.x3d import create_x3d_stem
from timm.models.vision_transformer import VisionTransformer
from timm.models.swin_transformer_v2 import SwinTransformerV2
from . import backbones
from . import segmentation
from .pooling import create_pool2d_layer, create_pool3d_layer
from .sequence import Transformer, DualTransformer, DualTransformerV2
from .tools import change_initial_stride, change_num_input_channels


class Net2D(nn.Module):

    def __init__(self,
                 backbone,
                 pretrained,
                 num_classes,
                 dropout,
                 pool,
                 in_channels=3,
                 change_stride=None,
                 feature_reduction=None,
                 multisample_dropout=False,
                 load_pretrained_backbone=None,
                 freeze_backbone=False,
                 backbone_params={},
                 pool_layer_params={}):

        super().__init__()
        self.backbone, dim_feats = backbones.create_backbone(name=backbone, pretrained=pretrained, **backbone_params)
        if isinstance(pool, str):
            self.pool_layer = create_pool2d_layer(name=pool, **pool_layer_params)
        else:
            self.pool_layer = nn.Identity()
        if pool == "catavgmax": 
            dim_feats *= 2
        self.msdo = multisample_dropout
        if in_channels != 3:
            self.backbone = change_num_input_channels(self.backbone, in_channels)
        if change_stride:
            self.backbone = change_initial_stride(self.backbone, tuple(change_stride), in_channels)
        self.dropout = nn.Dropout(p=dropout)
        if isinstance(feature_reduction, int):
            # Use 1D grouped convolution to reduce # of parameters
            groups = math.gcd(dim_feats, feature_reduction)
            self.feature_reduction = nn.Conv1d(dim_feats, feature_reduction, groups=groups, kernel_size=1,
                                               stride=1, bias=False)
            dim_feats = feature_reduction
        self.classifier = nn.Linear(dim_feats, num_classes) 

        if load_pretrained_backbone:
            # Assumes that model has a `backbone` attribute
            # Note: if you want to load the entire pretrained model, this is done via the
            # builder.build_model function
            print(f"Loading pretrained backbone from {load_pretrained_backbone} ...")
            weights = torch.load(load_pretrained_backbone, map_location=lambda storage, loc: storage)['state_dict']
            weights = {re.sub(r'^model.', '', k) : v for k,v in weights.items()}
            # Get feature_reduction, if present
            feat_reduce_weight = {re.sub(r"^feature_reduction.", "", k): v
                                  for k, v in weights.items() if "feature_reduction" in k}
            # Get backbone only
            weights = {re.sub(r'^backbone.', '', k) : v for k,v in weights.items() if 'backbone' in k}
            self.backbone.load_state_dict(weights)
            if len(feat_reduce_weight) > 0:
                print("Also loading feature reduction layer ...")
                self.feature_reduction.load_state_dict(feat_reduce_weight)

        if freeze_backbone:
            print("Freezing backbone ...")
            for param in self.backbone.parameters():
                param.requires_grad = False

    def extract_features(self, x):
        features = self.backbone(x)
        features = self.pool_layer(features)
        if isinstance(self.backbone, VisionTransformer):
            features = features[:, self.backbone.num_prefix_tokens:].mean(dim=1)
        if isinstance(self.backbone, SwinTransformerV2):
            features = features.mean(dim=1)
        if hasattr(self, "feature_reduction"):
            features = self.feature_reduction(features.unsqueeze(-1)).squeeze(-1)
        return features

    def forward(self, x):
        features = self.extract_features(x)
        if self.msdo:
            x = torch.mean(torch.stack([self.classifier(self.dropout(features)) for _ in range(5)]), dim=0)
        else:
            x = self.classifier(self.dropout(features))
        # Important nuance:
        # For binary classification, the model returns a tensor of shape (N,)
        # Otherwise, (N,C)
        return x[:, 0] if self.classifier.out_features == 1 else x


class SeqNet2D(Net2D):

    def forward(self, x):
        # x.shape = (N, C, Z, H, W)
        features = torch.stack([self.extract_features(x[:, :, _]) for _ in range(x.size(2))], dim=2)
        features = features.max(2)[0]

        if self.msdo:
            x = torch.mean(torch.stack([self.classifier(self.dropout(features)) for _ in range(5)]), dim=0)
        else:
            x = self.classifier(self.dropout(features))
        # Important nuance:
        # For binary classification, the model returns a tensor of shape (N,)
        # Otherwise, (N,C)
        return x[:, 0] if self.classifier.out_features == 1 else x


class TDCNN(nn.Module):

    def __init__(self, cnn_params, transformer_params, freeze_cnn=False, freeze_transformer=False):
        super().__init__()
        self.cnn = Net2D(**cnn_params)
        del self.cnn.dropout
        del self.cnn.classifier
        self.transformer = Transformer(**transformer_params)

        if freeze_cnn:
            for param in self.cnn.parameters():
                param.requires_grad = False

        if freeze_transformer:
            for param in self.transformer.parameters():
                param.requires_grad = False

    def extract_features(self, x):
        N, C, Z, H, W = x.size()
        assert N == 1, "For feature extraction, batch size must be 1"
        features = self.cnn.extract_features(x.squeeze(0).transpose(0, 1)).unsqueeze(0)
        # features.shape = (1, Z, dim_feats)
        return self.transformer.extract_features((features, torch.ones((features.size(0), features.size(1))).to(features.device)))

    def forward(self, x):
        # BCZHW
        features = torch.stack([self.cnn.extract_features(x[:, :, i]) for i in range(x.size(2))], dim=1)
        # B, seq_len, dim_feat
        return self.transformer((features, torch.ones((features.size(0), features.size(1))).to(features.device)))


class Net2DWith3DStem(Net2D):

    def __init__(self, *args, **kwargs):
        stem_out_channels = kwargs.pop("stem_out_channels", 24)
        load_pretrained_stem = kwargs.pop("load_pretrained_stem", None)
        conv_kernel_size = tuple(kwargs.pop("conv_kernel_size", (5, 3, 3)))
        conv_stride = tuple(kwargs.pop("conv_stride", (1, 2, 2)))
        in_channels = kwargs.pop("in_channels", 3)
        kwargs["in_channels"] = stem_out_channels
        super().__init__(*args, **kwargs)
        self.stem_layer = create_x3d_stem(in_channels=in_channels,
                                          out_channels=stem_out_channels,
                                          conv_kernel_size=conv_kernel_size,
                                          conv_stride=conv_stride)
        if kwargs["pretrained"]:
            from pytorchvideo.models.hub import x3d_l
            self.stem_layer.load_state_dict(x3d_l(pretrained=True).blocks[0].state_dict())

        if load_pretrained_stem:
            import re
            print(f"  Loading pretrained stem from {load_pretrained_stem} ...")
            weights = torch.load(load_pretrained_stem, map_location=lambda storage, loc: storage)['state_dict']
            stem_weights = {k.replace("model.backbone.blocks.0.", ""): v for k, v in weights.items() if "backbone.blocks.0" in k}
            self.stem_layer.load_state_dict(stem_weights)

    def forward(self, x):
        x = self.stem_layer(x)
        x = x.mean(3)
        features = self.extract_features(x)
        if self.msdo:
            x = torch.mean(torch.stack([self.classifier(self.dropout(features)) for _ in range(5)]), dim=0)
        else:
            x = self.classifier(self.dropout(features))
        # Important nuance:
        # For binary classification, the model returns a tensor of shape (N,)
        # Otherwise, (N,C)
        return x[:, 0] if self.classifier.out_features == 1 else x


class Net3D(Net2D):

    def __init__(self, *args, **kwargs):
        z_strides = kwargs.pop("z_strides", [1,1,1,1,1])
        super().__init__(*args, **kwargs)
        self.pool_layer = create_pool3d_layer(name=kwargs["pool"], **kwargs.pop("pool_layer_params", {}))


class NetSegment2D(nn.Module):
    """ For now, this class essentially servers as a wrapper for the 
    segmentation model which is mostly defined in the segmentation submodule, 
    similar to the original segmentation_models.pytorch.

    It may be worth refactoring it in the future, such that you define this as
    a general class, then select your choice of encoder and decoder. The encoder
    is pretty much the same across all the segmentation models currently 
    implemented (DeepLabV3+, FPN, Unet).
    """
    def __init__(self,
                 architecture,
                 encoder_name,
                 encoder_params,
                 decoder_params,
                 num_classes,
                 dropout,
                 in_channels,
                 load_pretrained_encoder=None,
                 freeze_encoder=False,
                 deep_supervision=False,
                 pool_layer_params={},
                 aux_head_params={}):

        super().__init__()

        self.segmentation_model = getattr(segmentation, architecture)(
                encoder_name=encoder_name,
                encoder_params=encoder_params,
                dropout=dropout,
                classes=num_classes,
                deep_supervision=deep_supervision,
                in_channels=in_channels,
                **decoder_params
            )


        if load_pretrained_encoder: 
            # Assumes that model has a `encoder` attribute
            # Note: if you want to load the entire pretrained model, this is done via the
            # builder.build_model function
            print(f"Loading pretrained encoder from {load_pretrained_encoder} ...")
            weights = torch.load(load_pretrained_encoder, map_location=lambda storage, loc: storage)['state_dict']
            weights = {re.sub(r'^model.segmentation_model', '', k) : v for k,v in weights.items()}
            # Get encoder only
            weights = {re.sub(r'^encoder.', '', k) : v for k,v in weights.items() if 'backbone' in k}
            self.segmentation_model.encoder.load_state_dict(weights)

        if freeze_encoder:
            print("Freezing encoder ...")
            for param in self.segmentation_model.encoder.parameters():
                param.requires_grad = False


    def forward(self, x):
        return self.segmentation_model(x)


class NetSegment3D(NetSegment2D): 

    pass