Spaces:
Runtime error
Runtime error
File size: 20,538 Bytes
231edce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 |
import sys
from functools import partial
import torch
from torch import nn
from torch.autograd import Function as Function
from .attention import MultiScaleAttention, attention_pool
from .common import Mlp, TwoStreamFusion, drop_path
from .utils import round_width
class ReversibleMViT(nn.Module):
"""
Reversible model builder. This builds the reversible transformer encoder
and allows reversible training.
Karttikeya Mangalam, Haoqi Fan, Yanghao Li, Chao-Yuan Wu, Bo Xiong,
Christoph Feichtenhofer, Jitendra Malik
"Reversible Vision Transformers"
https://openaccess.thecvf.com/content/CVPR2022/papers/Mangalam_Reversible_Vision_Transformers_CVPR_2022_paper.pdf
"""
def __init__(self, config, model):
"""
The `__init__` method of any subclass should also contain these
arguments.
Args:
cfg (CfgNode): model building configs, details are in the
comments of the config file.
model (nn.Module): parent MViT module this module forms
a reversible encoder in.
"""
super().__init__()
self.cfg = config
embed_dim = self.cfg.MVIT.EMBED_DIM
depth = self.cfg.MVIT.DEPTH
num_heads = self.cfg.MVIT.NUM_HEADS
mlp_ratio = self.cfg.MVIT.MLP_RATIO
qkv_bias = self.cfg.MVIT.QKV_BIAS
drop_path_rate = self.cfg.MVIT.DROPPATH_RATE
self.dropout = config.MVIT.DROPOUT_RATE
self.pre_q_fusion = self.cfg.MVIT.REV.PRE_Q_FUSION
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
input_size = model.patch_dims
self.layers = nn.ModuleList([])
self.no_custom_backward = False
if self.cfg.MVIT.NORM == "layernorm":
norm_layer = partial(nn.LayerNorm, eps=1e-6)
else:
raise NotImplementedError("Only supports layernorm.")
dim_mul, head_mul = torch.ones(depth + 1), torch.ones(depth + 1)
for i in range(len(self.cfg.MVIT.DIM_MUL)):
dim_mul[self.cfg.MVIT.DIM_MUL[i][0]] = self.cfg.MVIT.DIM_MUL[i][1]
for i in range(len(self.cfg.MVIT.HEAD_MUL)):
head_mul[self.cfg.MVIT.HEAD_MUL[i][0]] = self.cfg.MVIT.HEAD_MUL[i][
1
]
pool_q = model.pool_q
pool_kv = model.pool_kv
stride_q = model.stride_q
stride_kv = model.stride_kv
for i in range(depth):
num_heads = round_width(num_heads, head_mul[i])
# Upsampling inside the MHPA, input to the Q-pooling block is lower C dimension
# This localizes the feature changes in a single block, making more computation reversible.
embed_dim = round_width(
embed_dim, dim_mul[i - 1] if i > 0 else 1.0, divisor=num_heads
)
dim_out = round_width(
embed_dim,
dim_mul[i],
divisor=round_width(num_heads, head_mul[i + 1]),
)
if i in self.cfg.MVIT.REV.BUFFER_LAYERS:
layer_type = StageTransitionBlock
input_mult = 2 if "concat" in self.pre_q_fusion else 1
else:
layer_type = ReversibleBlock
input_mult = 1
dimout_correction = (
2 if (input_mult == 2 and "concat" in self.pre_q_fusion) else 1
)
self.layers.append(
layer_type(
dim=embed_dim
* input_mult, # added only for concat fusion before Qpooling layers
input_size=input_size,
dim_out=dim_out * input_mult // dimout_correction,
num_heads=num_heads,
cfg=self.cfg,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop_path=dpr[i],
norm_layer=norm_layer,
kernel_q=pool_q[i] if len(pool_q) > i else [],
kernel_kv=pool_kv[i] if len(pool_kv) > i else [],
stride_q=stride_q[i] if len(stride_q) > i else [],
stride_kv=stride_kv[i] if len(stride_kv) > i else [],
layer_id=i,
pre_q_fusion=self.pre_q_fusion,
)
)
# F is the attention block
self.layers[-1].F.thw = input_size
if len(stride_q[i]) > 0:
input_size = [
size // stride
for size, stride in zip(input_size, stride_q[i])
]
embed_dim = dim_out
@staticmethod
def vanilla_backward(h, layers, buffer):
"""
Using rev layers without rev backpropagation. Debugging purposes only.
Activated with self.no_custom_backward.
"""
# split into hidden states (h) and attention_output (a)
h, a = torch.chunk(h, 2, dim=-1)
for _, layer in enumerate(layers):
a, h = layer(a, h)
return torch.cat([a, h], dim=-1)
def forward(self, x):
# process the layers in a reversible stack and an irreversible stack.
stack = []
for l_i in range(len(self.layers)):
if isinstance(self.layers[l_i], StageTransitionBlock):
stack.append(("StageTransition", l_i))
else:
if len(stack) == 0 or stack[-1][0] == "StageTransition":
stack.append(("Reversible", []))
stack[-1][1].append(l_i)
for layer_seq in stack:
if layer_seq[0] == "StageTransition":
x = self.layers[layer_seq[1]](x)
else:
x = torch.cat([x, x], dim=-1)
# no need for custom backprop in eval/model stat log
if not self.training or self.no_custom_backward:
executing_fn = ReversibleMViT.vanilla_backward
else:
executing_fn = RevBackProp.apply
x = executing_fn(
x,
self.layers[layer_seq[1][0] : layer_seq[1][-1] + 1],
[], # buffer activations
)
# Apply dropout
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
return x
class RevBackProp(Function):
"""
Custom Backpropagation function to allow (A) flusing memory in foward
and (B) activation recomputation reversibly in backward for gradient calculation.
Inspired by https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py
"""
@staticmethod
def forward(
ctx,
x,
layers,
buffer_layers, # List of layer ids for int activation to buffer
):
"""
Reversible Forward pass. Any intermediate activations from `buffer_layers` are
cached in ctx for forward pass. This is not necessary for standard usecases.
Each reversible layer implements its own forward pass logic.
"""
buffer_layers.sort()
X_1, X_2 = torch.chunk(x, 2, dim=-1)
intermediate = []
for layer in layers:
X_1, X_2 = layer(X_1, X_2)
if layer.layer_id in buffer_layers:
intermediate.extend([X_1.detach(), X_2.detach()])
if len(buffer_layers) == 0:
all_tensors = [X_1.detach(), X_2.detach()]
else:
intermediate = [torch.LongTensor(buffer_layers), *intermediate]
all_tensors = [X_1.detach(), X_2.detach(), *intermediate]
ctx.save_for_backward(*all_tensors)
ctx.layers = layers
return torch.cat([X_1, X_2], dim=-1)
@staticmethod
def backward(ctx, dx):
"""
Reversible Backward pass. Any intermediate activations from `buffer_layers` are
recovered from ctx. Each layer implements its own loic for backward pass (both
activation recomputation and grad calculation).
"""
dX_1, dX_2 = torch.chunk(dx, 2, dim=-1)
# retrieve params from ctx for backward
X_1, X_2, *int_tensors = ctx.saved_tensors
# no buffering
if len(int_tensors) != 0:
buffer_layers = int_tensors[0].tolist()
else:
buffer_layers = []
layers = ctx.layers
for _, layer in enumerate(layers[::-1]):
if layer.layer_id in buffer_layers:
X_1, X_2, dX_1, dX_2 = layer.backward_pass(
Y_1=int_tensors[
buffer_layers.index(layer.layer_id) * 2 + 1
],
Y_2=int_tensors[
buffer_layers.index(layer.layer_id) * 2 + 2
],
dY_1=dX_1,
dY_2=dX_2,
)
else:
X_1, X_2, dX_1, dX_2 = layer.backward_pass(
Y_1=X_1,
Y_2=X_2,
dY_1=dX_1,
dY_2=dX_2,
)
dx = torch.cat([dX_1, dX_2], dim=-1)
del int_tensors
del dX_1, dX_2, X_1, X_2
return dx, None, None
class StageTransitionBlock(nn.Module):
"""
Blocks for changing the feature dimensions in MViT (using Q-pooling).
See Section 3.3.1 in paper for details.
"""
def __init__(
self,
dim,
input_size,
dim_out,
num_heads,
mlp_ratio,
qkv_bias,
drop_path,
kernel_q,
kernel_kv,
stride_q,
stride_kv,
cfg,
norm_layer=nn.LayerNorm,
pre_q_fusion=None,
layer_id=0,
):
"""
Uses the same structure of F and G functions as Reversible Block except
without using reversible forward (and backward) pass.
"""
super().__init__()
self.drop_path_rate = drop_path
embed_dim = dim
self.F = AttentionSubBlock(
dim=embed_dim,
input_size=input_size,
num_heads=num_heads,
cfg=cfg,
dim_out=dim_out,
kernel_q=kernel_q,
kernel_kv=kernel_kv,
stride_q=stride_q,
stride_kv=stride_kv,
norm_layer=norm_layer,
)
self.G = MLPSubblock(
dim=dim_out,
mlp_ratio=mlp_ratio,
norm_layer=norm_layer,
)
self.layer_id = layer_id
self.is_proj = False
self.has_cls_embed = cfg.MVIT.CLS_EMBED_ON
self.is_conv = False
self.pool_first = cfg.MVIT.POOL_FIRST
self.mode = cfg.MVIT.MODE
self.pre_q_fuse = TwoStreamFusion(pre_q_fusion, dim=dim)
if cfg.MVIT.REV.RES_PATH == "max":
self.res_conv = False
self.pool_skip = nn.MaxPool3d(
# self.attention.attn.pool_q.kernel_size,
[s + 1 if s > 1 else s for s in self.F.attn.pool_q.stride],
self.F.attn.pool_q.stride,
[int(k // 2) for k in self.F.attn.pool_q.stride],
# self.attention.attn.pool_q.padding,
ceil_mode=False,
)
elif cfg.MVIT.REV.RES_PATH == "conv":
self.res_conv = True
else:
raise NotImplementedError
# Add a linear projection in residual branch
if embed_dim != dim_out:
self.is_proj = True
self.res_proj = nn.Linear(embed_dim, dim_out, bias=True)
def forward(
self,
x,
):
"""
Forward logic is similar to MultiScaleBlock with Q-pooling.
"""
x = self.pre_q_fuse(x)
# fork tensor for residual connections
x_res = x
# This uses conv to pool the residual hidden features
# but done before pooling only if not pool_first
if self.is_proj and not self.pool_first:
x_res = self.res_proj(x_res)
if self.res_conv:
# Pooling the hidden features with the same conv as Q
N, L, C = x_res.shape
# This handling is the same as that of q in MultiScaleAttention
if self.mode == "conv_unshared":
fold_dim = 1
else:
fold_dim = self.F.attn.num_heads
# Output is (B, N, L, C)
x_res = x_res.reshape(N, L, fold_dim, C // fold_dim).permute(
0, 2, 1, 3
)
x_res, _ = attention_pool(
x_res,
self.F.attn.pool_q,
# thw_shape = self.attention.attn.thw,
thw_shape=self.F.thw,
has_cls_embed=self.has_cls_embed,
norm=self.F.attn.norm_q
if hasattr(self.F.attn, "norm_q")
else None,
)
x_res = x_res.permute(0, 2, 1, 3).reshape(N, x_res.shape[2], C)
else:
# Pooling the hidden features with max op
x_res, _ = attention_pool(
x_res,
self.pool_skip,
thw_shape=self.F.attn.thw,
has_cls_embed=self.has_cls_embed,
)
# If pool_first then project to higher dim now
if self.is_proj and self.pool_first:
x_res = self.res_proj(x_res)
x = self.F(x)
x = x_res + x
x = x + self.G(x)
x = drop_path(x, drop_prob=self.drop_path_rate, training=self.training)
return x
class ReversibleBlock(nn.Module):
"""
Reversible Blocks for Reversible Vision Transformer and also
for state-preserving blocks in Reversible MViT. See Section
3.3.2 in paper for details.
"""
def __init__(
self,
dim,
input_size,
dim_out,
num_heads,
mlp_ratio,
qkv_bias,
drop_path,
kernel_q,
kernel_kv,
stride_q,
stride_kv,
cfg,
norm_layer=nn.LayerNorm,
layer_id=0,
**kwargs
):
"""
Block is composed entirely of function F (Attention
sub-block) and G (MLP sub-block) including layernorm.
"""
super().__init__()
self.drop_path_rate = drop_path
self.F = AttentionSubBlock(
dim=dim,
input_size=input_size,
num_heads=num_heads,
cfg=cfg,
dim_out=dim_out,
kernel_q=kernel_q,
kernel_kv=kernel_kv,
stride_q=stride_q,
stride_kv=stride_kv,
norm_layer=norm_layer,
)
self.G = MLPSubblock(
dim=dim,
mlp_ratio=mlp_ratio,
norm_layer=norm_layer,
)
self.layer_id = layer_id
self.seeds = {}
def seed_cuda(self, key):
"""
Fix seeds to allow for stochastic elements such as
dropout to be reproduced exactly in activation
recomputation in the backward pass.
"""
# randomize seeds
# use cuda generator if available
if (
hasattr(torch.cuda, "default_generators")
and len(torch.cuda.default_generators) > 0
):
# GPU
device_idx = torch.cuda.current_device()
seed = torch.cuda.default_generators[device_idx].seed()
else:
# CPU
seed = int(torch.seed() % sys.maxsize)
self.seeds[key] = seed
torch.manual_seed(self.seeds[key])
def forward(self, X_1, X_2):
"""
forward pass equations:
Y_1 = X_1 + Attention(X_2), F = Attention
Y_2 = X_2 + MLP(Y_1), G = MLP
"""
self.seed_cuda("attn")
# Y_1 : attn_output
f_X_2 = self.F(X_2)
self.seed_cuda("droppath")
f_X_2_dropped = drop_path(
f_X_2, drop_prob=self.drop_path_rate, training=self.training
)
# Y_1 = X_1 + f(X_2)
Y_1 = X_1 + f_X_2_dropped
# free memory
del X_1
self.seed_cuda("FFN")
g_Y_1 = self.G(Y_1)
torch.manual_seed(self.seeds["droppath"])
g_Y_1_dropped = drop_path(
g_Y_1, drop_prob=self.drop_path_rate, training=self.training
)
# Y_2 = X_2 + g(Y_1)
Y_2 = X_2 + g_Y_1_dropped
del X_2
return Y_1, Y_2
def backward_pass(
self,
Y_1,
Y_2,
dY_1,
dY_2,
):
"""
equation for activation recomputation:
X_2 = Y_2 - G(Y_1), G = MLP
X_1 = Y_1 - F(X_2), F = Attention
"""
# temporarily record intermediate activation for G
# and use them for gradient calculcation of G
with torch.enable_grad():
Y_1.requires_grad = True
torch.manual_seed(self.seeds["FFN"])
g_Y_1 = self.G(Y_1)
torch.manual_seed(self.seeds["droppath"])
g_Y_1 = drop_path(
g_Y_1, drop_prob=self.drop_path_rate, training=self.training
)
g_Y_1.backward(dY_2, retain_graph=True)
# activation recomputation is by design and not part of
# the computation graph in forward pass.
with torch.no_grad():
X_2 = Y_2 - g_Y_1
del g_Y_1
dY_1 = dY_1 + Y_1.grad
Y_1.grad = None
# record F activations and calc gradients on F
with torch.enable_grad():
X_2.requires_grad = True
torch.manual_seed(self.seeds["attn"])
f_X_2 = self.F(X_2)
torch.manual_seed(self.seeds["droppath"])
f_X_2 = drop_path(
f_X_2, drop_prob=self.drop_path_rate, training=self.training
)
f_X_2.backward(dY_1, retain_graph=True)
# propagate reverse computed acitvations at the start of
# the previou block for backprop.s
with torch.no_grad():
X_1 = Y_1 - f_X_2
del f_X_2, Y_1
dY_2 = dY_2 + X_2.grad
X_2.grad = None
X_2 = X_2.detach()
return X_1, X_2, dY_1, dY_2
class MLPSubblock(nn.Module):
"""
This creates the function G such that the entire block can be
expressed as F(G(X)). Includes pre-LayerNorm.
"""
def __init__(
self,
dim,
mlp_ratio,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.norm = norm_layer(dim, eps=1e-6, elementwise_affine=True)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=nn.GELU,
)
def forward(self, x):
return self.mlp(self.norm(x))
class AttentionSubBlock(nn.Module):
"""
This creates the function F such that the entire block can be
expressed as F(G(X)). Includes pre-LayerNorm.
"""
def __init__(
self,
dim,
input_size,
num_heads,
cfg,
dim_out=None,
kernel_q=(1, 1, 1),
kernel_kv=(1, 1, 1),
stride_q=(1, 1, 1),
stride_kv=(1, 1, 1),
norm_layer=nn.LayerNorm,
):
super().__init__()
self.norm = norm_layer(dim, eps=1e-6, elementwise_affine=True)
# This will be set externally during init
self.thw = None
# the actual attention details are the same as Multiscale
# attention for MViTv2 (with channel up=projection inside block)
# can also implement no upprojection attention for vanilla ViT
self.attn = MultiScaleAttention(
dim,
dim_out,
input_size=input_size,
num_heads=num_heads,
kernel_q=kernel_q,
kernel_kv=kernel_kv,
stride_q=stride_q,
stride_kv=stride_kv,
norm_layer=norm_layer,
drop_rate=cfg.MVIT.DROPOUT_RATE,
qkv_bias=cfg.MVIT.QKV_BIAS,
has_cls_embed=cfg.MVIT.CLS_EMBED_ON,
mode=cfg.MVIT.MODE,
pool_first=cfg.MVIT.POOL_FIRST,
rel_pos_spatial=cfg.MVIT.REL_POS_SPATIAL,
rel_pos_temporal=cfg.MVIT.REL_POS_TEMPORAL,
rel_pos_zero_init=cfg.MVIT.REL_POS_ZERO_INIT,
residual_pooling=cfg.MVIT.RESIDUAL_POOLING,
separate_qkv=cfg.MVIT.SEPARATE_QKV,
)
def forward(self, x):
out, _ = self.attn(self.norm(x), self.thw)
return out |