Spaces:
Runtime error
Runtime error
File size: 5,570 Bytes
231edce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import torch
import torch.nn as nn
try:
from inplace_abn import InPlaceABN
except ImportError:
InPlaceABN = None
class Conv2dReLU(nn.Sequential):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
padding=0,
stride=1,
use_batchnorm=True,
):
if use_batchnorm == "inplace" and InPlaceABN is None:
raise RuntimeError(
"In order to use `use_batchnorm='inplace'` inplace_abn package must be installed. "
+ "To install see: https://github.com/mapillary/inplace_abn"
)
conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
bias=not (use_batchnorm),
)
relu = nn.ReLU(inplace=True)
if use_batchnorm == "inplace":
bn = InPlaceABN(out_channels, activation="leaky_relu", activation_param=0.0)
relu = nn.Identity()
elif use_batchnorm and use_batchnorm != "inplace":
bn = nn.BatchNorm2d(out_channels)
else:
bn = nn.Identity()
super(Conv2dReLU, self).__init__(conv, bn, relu)
def GroupNorm(num_channels):
return nn.GroupNorm(num_groups=16, num_channels=num_channels)
class Conv3dReLU(nn.Sequential):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
padding=0,
stride=1,
use_batchnorm=True,
):
if use_batchnorm == "inplace" and InPlaceABN is None:
raise RuntimeError(
"In order to use `use_batchnorm='inplace'` inplace_abn package must be installed. "
+ "To install see: https://github.com/mapillary/inplace_abn"
)
conv = nn.Conv3d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
bias=not (use_batchnorm),
)
relu = nn.ReLU(inplace=True)
if use_batchnorm == "inplace":
bn = InPlaceABN(out_channels, activation="leaky_relu", activation_param=0.0)
relu = nn.Identity()
elif use_batchnorm and use_batchnorm != "inplace":
bn = nn.BatchNorm3d(out_channels)
else:
bn = GroupNorm(out_channels)
super(Conv3dReLU, self).__init__(conv, bn, relu)
class SCSEModule_3D(nn.Module):
def __init__(self, in_channels, reduction=16):
super().__init__()
self.cSE = nn.Sequential(
nn.AdaptiveAvgPool3d(1),
nn.Conv3d(in_channels, in_channels // reduction, 1),
nn.ReLU(inplace=True),
nn.Conv3d(in_channels // reduction, in_channels, 1),
nn.Sigmoid(),
)
self.sSE = nn.Sequential(nn.Conv3d(in_channels, 1, 1), nn.Sigmoid())
def forward(self, x):
return x * self.cSE(x) + x * self.sSE(x)
class SCSEModule(nn.Module):
def __init__(self, in_channels, reduction=16):
super().__init__()
self.cSE = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, in_channels // reduction, 1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels // reduction, in_channels, 1),
nn.Sigmoid(),
)
self.sSE = nn.Sequential(nn.Conv2d(in_channels, 1, 1), nn.Sigmoid())
def forward(self, x):
return x * self.cSE(x) + x * self.sSE(x)
class ArgMax(nn.Module):
def __init__(self, dim=None):
super().__init__()
self.dim = dim
def forward(self, x):
return torch.argmax(x, dim=self.dim)
class Clamp(nn.Module):
def __init__(self, min=0, max=1):
super().__init__()
self.min, self.max = min, max
def forward(self, x):
return torch.clamp(x, self.min, self.max)
class Activation(nn.Module):
def __init__(self, name, **params):
super().__init__()
if name is None or name == "identity":
self.activation = nn.Identity(**params)
elif name == "sigmoid":
self.activation = nn.Sigmoid()
elif name == "softmax2d":
self.activation = nn.Softmax(dim=1, **params)
elif name == "softmax":
self.activation = nn.Softmax(**params)
elif name == "logsoftmax":
self.activation = nn.LogSoftmax(**params)
elif name == "tanh":
self.activation = nn.Tanh()
elif name == "argmax":
self.activation = ArgMax(**params)
elif name == "argmax2d":
self.activation = ArgMax(dim=1, **params)
elif name == "clamp":
self.activation = Clamp(**params)
elif callable(name):
self.activation = name(**params)
else:
raise ValueError(
f"Activation should be callable/sigmoid/softmax/logsoftmax/tanh/"
f"argmax/argmax2d/clamp/None; got {name}"
)
def forward(self, x):
return self.activation(x)
class Attention(nn.Module):
def __init__(self, name, **params):
super().__init__()
if name is None:
self.attention = nn.Identity(**params)
elif name == "scse":
self.attention = SCSEModule(**params)
elif name == "scse_3d":
self.attention = SCSEModule_3D(**params)
else:
raise ValueError("Attention {} is not implemented".format(name))
def forward(self, x):
return self.attention(x)
|