Spaces:
Runtime error
Runtime error
import cv2 | |
import glob | |
import gradio as gr | |
import mediapy | |
import nibabel | |
import numpy as np | |
import shutil | |
import torch | |
import torch.nn.functional as F | |
from omegaconf import OmegaConf | |
from skp import builder | |
def window(x, WL=400, WW=2500): | |
lower, upper = WL - WW // 2, WL + WW // 2 | |
x = np.clip(x, lower, upper) | |
x = x - lower | |
x = x / (upper - lower) | |
return (x * 255).astype("uint8") | |
def rescale(x): | |
x = x / 255. | |
x = x - 0.5 | |
x = x * 2.0 | |
return x | |
def get_cervical_spine_coordinates(x, original_shape): | |
# Assumes x is torch tensor with shape (1, 8, Z, H, W) | |
x = x.squeeze(0).numpy()[:7] | |
rescale_factor = [original_shape[0] / x.shape[1], original_shape[1] / x.shape[2], original_shape[2] / x.shape[3]] | |
coords_dict = {} | |
for level in range(x.shape[0]): | |
coords = np.where(x[level] >= 0.4) | |
coords = np.vstack(coords).astype("float") | |
coords[0] = coords[0] * rescale_factor[0] | |
coords[1] = coords[1] * rescale_factor[1] | |
coords[2] = coords[2] * rescale_factor[2] | |
coords = coords.astype("int") | |
coords_dict[level] = coords[0].min(), coords[0].max(),\ | |
coords[1].min(), coords[1].max(),\ | |
coords[2].min(), coords[2].max() | |
return coords_dict | |
def generate_segmentation_video(study): | |
img = nibabel.load(study).get_fdata()[:, ::-1, ::-1].transpose(2, 1, 0) | |
img = window(img) | |
X = torch.from_numpy(img).float().unsqueeze(0).unsqueeze(0) | |
X = F.interpolate(X, size=(192, 192, 192), mode="nearest") | |
X = rescale(X) | |
with torch.no_grad(): | |
seg_output = seg_model(X) | |
seg_output = torch.sigmoid(seg_output) | |
c_spine_coords = get_cervical_spine_coordinates(seg_output, img.shape) | |
chunk_features = [] | |
for level, coords in c_spine_coords.items(): | |
z1, z2, h1, h2, w1, w2 = coords | |
X = torch.from_numpy(img[z1:z2+1, h1:h2+1, w1:w2+1]).float().unsqueeze(0).unsqueeze(0) | |
X = F.interpolate(X, size=(64, 288, 288), mode="nearest") | |
X = rescale(X) | |
with torch.no_grad(): | |
chunk_features.append(x3d_model.extract_features(X)) | |
chunk_features = torch.stack(chunk_features, dim=1) | |
with torch.no_grad(): | |
final_output = torch.sigmoid(seq_model((chunk_features, torch.ones((chunk_features.size(1), ))))) | |
final_output_dict = {f"C{i+1}": final_output[:, i].item() for i in range(7)} | |
final_output_dict["Overall"] = final_output[:, -1].item() | |
seg_output = F.interpolate(seg_output, size=img.shape, mode="nearest").squeeze(0).numpy() | |
# shape = (8, Z, H, W) | |
p_spine = seg_output[:7].sum(0) | |
# shape = (Z, H, W) | |
seg_output = np.argmax(seg_output, dim=0) + 1 | |
# shape = (Z, H, W) | |
seg_output[p_spine < 0.5] = 0 | |
seg_output = (seg_output * 255 / 7).astype("uint8") | |
seg_output = np.stack([cv2.applyColorMap(_, cv2.COLORMAP_JET) for _ in seg_output]) | |
seg_output[p_spine < 0.5] = 0 | |
frames = [] | |
skip = 8 | |
for idx in range(0, img.shape[2], skip): | |
i = img[:, :, idx] | |
o = seg_output[:, :, idx] | |
i = cv2.cvtColor(i, cv2.COLOR_GRAY2RGB) | |
frame = np.concatenate((i, o), 1) | |
frames.append(frame) | |
mediapy.write_video("video.mp4", frames, fps=10) | |
return "video.mp4", final_output_dict | |
ffmpeg_path = shutil.which('ffmpeg') | |
mediapy.set_ffmpeg(ffmpeg_path) | |
config = OmegaConf.load("configs/pseudoseg000.yaml") | |
config.model.load_pretrained = "seg.ckpt" | |
config.model.params.encoder_params.pretrained = False | |
seg_model = builder.build_model(config).eval() | |
config = OmegaConf.load("configs/chunk000.yaml") | |
config.model.load_pretrained = "x3d.ckpt" | |
config.model.params.pretrained = False | |
x3d_model = builder.build_model(config).eval() | |
config = OmegaConf.load("configs/chunkseq003.yaml") | |
config.model.load_pretrained = "seq.ckpt" | |
seq_model = builder.build_model(config).eval() | |
examples = glob.glob("examples/*.nii.gz") | |
with gr.Blocks(theme="dark-peach") as demo: | |
select_study = gr.Dropdown(choices=sorted(examples), type="value", label="Select a study") | |
button_predict = gr.Button("Predict") | |
video_output = gr.Video(label="Cervical Spine Segmentation") | |
label_output = gr.Label(label="Fracture Predictions", show_label=False) | |
button_predict.click(fn=generate_segmentation_video, | |
inputs=select_study, | |
outputs=[video_output, label_output]) | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |