ianpan's picture
Initial commit
231edce
raw
history blame
930 Bytes
import torch
import torch.nn as nn
import torch.nn.functional as F
# From: https://github.com/filipradenovic/cnnimageretrieval-pytorch/blob/master/cirtorch/layers/pooling.py
def gem_1d(x, p=3, eps=1e-6):
return F.avg_pool1d(x.clamp(min=eps).pow(p), (x.size(-1),)).pow(1./p)
def gem_2d(x, p=3, eps=1e-6):
return F.avg_pool2d(x.clamp(min=eps).pow(p), (x.size(-2), x.size(-1))).pow(1./p)
def gem_3d(x, p=3, eps=1e-6):
return F.avg_pool3d(x.clamp(min=eps).pow(p), (x.size(-3), x.size(-2), x.size(-1))).pow(1./p)
_GEM_FN = {
1: gem_1d, 2: gem_2d, 3: gem_3d
}
class GeM(nn.Module):
def __init__(self, p=3, eps=1e-6, dim=2):
super().__init__()
self.p = nn.Parameter(torch.ones(1)*p)
self.eps = eps
self.dim = dim
self.flatten = nn.Flatten(1)
def forward(self, x):
pooled = _GEM_FN[self.dim](x, p=self.p, eps=self.eps)
return self.flatten(pooled)