ianpan's picture
Initial commit
231edce
raw
history blame
2.19 kB
import torch
from . import initialization as init
class SegmentationModel(torch.nn.Module):
def initialize(self):
init.initialize_decoder(self.decoder)
init.initialize_head(self.segmentation_head)
if self.classification_head is not None:
init.initialize_head(self.classification_head)
def check_input_shape(self, x):
h, w = x.shape[-2:]
output_stride = self.encoder.output_stride
if h % output_stride != 0 or w % output_stride != 0:
new_h = (h // output_stride + 1) * output_stride if h % output_stride != 0 else h
new_w = (w // output_stride + 1) * output_stride if w % output_stride != 0 else w
raise RuntimeError(
f"Wrong input shape height={h}, width={w}. Expected image height and width "
f"divisible by {output_stride}. Consider pad your images to shape ({new_h}, {new_w})."
)
def forward(self, x):
"""Sequentially pass `x` trough model`s encoder, decoder and heads"""
self.check_input_shape(x)
features = self.encoder(x)
decoder_output = self.decoder(*features)
if self.deep_supervision and self.training:
output = []
output.append(self.segmentation_head(decoder_output[-1]))
for head_idx in range(len(self.supervisor_heads)):
output.append(self.supervisor_heads[head_idx](decoder_output[-head_idx-2]))
return tuple(output)
else:
masks = self.segmentation_head(decoder_output)
if self.classification_head is not None:
labels = self.classification_head(features[-1])
return masks, labels
return masks
@torch.no_grad()
def predict(self, x):
"""Inference method. Switch model to `eval` mode, call `.forward(x)` with `torch.no_grad()`
Args:
x: 4D torch tensor with shape (batch_size, channels, height, width)
Return:
prediction: 4D torch tensor with shape (batch_size, classes, height, width)
"""
if self.training:
self.eval()
x = self.forward(x)
return x