Spaces:
Runtime error
Runtime error
from torch import nn | |
from typing import Optional | |
from ...base import ( | |
SegmentationModel, | |
SegmentationHead_3D, | |
ClassificationHead, | |
) | |
from ...encoders.create import create_encoder | |
from .decoder import DeepLabV3PlusDecoder_3D | |
class DeepLabV3Plus_3D(SegmentationModel): | |
"""DeepLabV3+ implementation from "Encoder-Decoder with Atrous Separable | |
Convolution for Semantic Image Segmentation" | |
Args: | |
encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone) | |
to extract features of different spatial resolution | |
encoder_depth: A number of stages used in encoder in range [3, 5]. Each stage generate features | |
two times smaller in spatial dimensions than previous one (e.g. for depth 0 we will have features | |
with shapes [(N, C, H, W),], for depth 1 - [(N, C, H, W), (N, C, H // 2, W // 2)] and so on). | |
Default is 5 | |
encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and | |
other pretrained weights (see table with available weights for each encoder_name) | |
encoder_output_stride: Downsampling factor for last encoder features (see original paper for explanation) | |
decoder_atrous_rates: Dilation rates for ASPP module (should be a tuple of 3 integer values) | |
decoder_channels: A number of convolution filters in ASPP module. Default is 256 | |
in_channels: A number of input channels for the model, default is 3 (RGB images) | |
classes: A number of classes for output mask (or you can think as a number of channels of output mask) | |
activation: An activation function to apply after the final convolution layer. | |
Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, | |
**callable** and **None**. | |
Default is **None** | |
upsampling: Final upsampling factor. Default is 4 to preserve input-output spatial shape identity | |
aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build | |
on top of encoder if **aux_params** is not **None** (default). Supported params: | |
- classes (int): A number of classes | |
- pooling (str): One of "max", "avg". Default is "avg" | |
- dropout (float): Dropout factor in [0, 1) | |
- activation (str): An activation function to apply "sigmoid"/"softmax" | |
(could be **None** to return logits) | |
Returns: | |
``torch.nn.Module``: **DeepLabV3Plus** | |
Reference: | |
https://arxiv.org/abs/1802.02611v3 | |
""" | |
def __init__( | |
self, | |
encoder_name: str, | |
encoder_params: dict = {"pretrained": True, "output_stride": 16}, | |
decoder_channels: int = 256, | |
decoder_atrous_rates: tuple = (12, 24, 36), | |
dropout: float = 0.2, | |
in_channels: int = 3, | |
classes: int = 1, | |
deep_supervision: bool = False, | |
norm_layer: str = "batch_norm", | |
activation: Optional[str] = None, | |
upsampling: int = 4, | |
aux_params: Optional[dict] = None, | |
): | |
super().__init__() | |
assert "x3d" in encoder_name, "Only X3D backbone is currently supported for 3D segmentation" | |
encoder_output_stride = encoder_params.pop("output_stride", None) | |
if encoder_output_stride not in [8, 16, 32]: | |
raise ValueError("Encoder output stride should be 8, 16, or 32; got {}".format(encoder_output_stride)) | |
self.encoder = create_encoder( | |
name=encoder_name, | |
encoder_params=encoder_params, | |
encoder_output_stride=encoder_output_stride, | |
in_channels=in_channels | |
) | |
assert norm_layer in ["batch_norm", "group_norm"] | |
self.decoder = DeepLabV3PlusDecoder_3D( | |
encoder_channels=self.encoder.out_channels, | |
out_channels=decoder_channels, | |
atrous_rates=decoder_atrous_rates, | |
output_stride=encoder_output_stride, | |
deep_supervision = deep_supervision, | |
norm_layer=norm_layer, | |
) | |
self.segmentation_head = SegmentationHead_3D( | |
in_channels=self.decoder.out_channels, | |
out_channels=classes, | |
kernel_size=1, | |
dropout=dropout, | |
upsampling=upsampling, | |
) | |
self.deep_supervision = deep_supervision | |
if self.deep_supervision: | |
self.supervisor_heads = [] | |
self.supervisor_heads.append( | |
SegmentationHead_3D( | |
in_channels=48, | |
out_channels=classes, | |
dropout=dropout, | |
kernel_size=3, | |
upsampling=1, | |
) | |
) | |
self.supervisor_heads.append( | |
SegmentationHead_3D( | |
in_channels=decoder_channels, | |
out_channels=classes, | |
dropout=dropout, | |
kernel_size=3, | |
upsampling=1, | |
) | |
) | |
self.supervisor_heads = nn.Sequential(*self.supervisor_heads) | |
if aux_params is not None: | |
self.classification_head = ClassificationHead(in_channels=self.encoder.out_channels[-1], **aux_params) | |
else: | |
self.classification_head = None | |