Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
from typing import Optional, Union, List | |
from ...encoders.create import create_encoder | |
from ...base import ( | |
SegmentationModel, | |
SegmentationHead_3D, | |
ClassificationHead, | |
) | |
from .decoder import UnetDecoder_3D | |
class Unet_3D(SegmentationModel): | |
"""Unet_ is a fully convolution neural network for image semantic segmentation. Consist of *encoder* | |
and *decoder* parts connected with *skip connections*. Encoder extract features of different spatial | |
resolution (skip connections) which are used by decoder to define accurate segmentation mask. Use *concatenation* | |
for fusing decoder blocks with skip connections. | |
Args: | |
encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone) | |
to extract features of different spatial resolution | |
encoder_depth: A number of stages used in encoder in range [3, 5]. Each stage generate features | |
two times smaller in spatial dimensions than previous one (e.g. for depth 0 we will have features | |
with shapes [(N, C, H, W),], for depth 1 - [(N, C, H, W), (N, C, H // 2, W // 2)] and so on). | |
Default is 5 | |
encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and | |
other pretrained weights (see table with available weights for each encoder_name) | |
decoder_channels: List of integers which specify **in_channels** parameter for convolutions used in decoder. | |
Length of the list should be the same as **encoder_depth** | |
decoder_use_batchnorm: If **True**, BatchNorm2d layer between Conv2D and Activation layers | |
is used. If **"inplace"** InplaceABN will be used, allows to decrease memory consumption. | |
Available options are **True, False, "inplace"** | |
decoder_attention_type: Attention module used in decoder of the model. Available options are | |
**None** and **scse** (https://arxiv.org/abs/1808.08127). | |
in_channels: A number of input channels for the model, default is 3 (RGB images) | |
classes: A number of classes for output mask (or you can think as a number of channels of output mask) | |
activation: An activation function to apply after the final convolution layer. | |
Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, | |
**callable** and **None**. | |
Default is **None** | |
aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build | |
on top of encoder if **aux_params** is not **None** (default). Supported params: | |
- classes (int): A number of classes | |
- pooling (str): One of "max", "avg". Default is "avg" | |
- dropout (float): Dropout factor in [0, 1) | |
- activation (str): An activation function to apply "sigmoid"/"softmax" | |
(could be **None** to return logits) | |
Returns: | |
``torch.nn.Module``: Unet | |
.. _Unet: | |
https://arxiv.org/abs/1505.04597 | |
""" | |
def __init__( | |
self, | |
encoder_name: str, | |
encoder_params: dict = {"pretrained": True, "depth": 5}, | |
decoder_use_batchnorm: bool = True, | |
decoder_channels: List[int] = (256, 128, 64, 32, 16), | |
decoder_attention_type: Optional[str] = None, | |
deep_supervision: bool = False, | |
dropout: float = 0.2, | |
in_channels: int = 3, | |
classes: int = 1, | |
activation: Optional[Union[str, callable]] = None, | |
upsampling: int = 1, | |
aux_params: Optional[dict] = None, | |
): | |
super().__init__() | |
encoder_depth = encoder_params.pop("depth", 5) | |
self.encoder = create_encoder( | |
name=encoder_name, | |
encoder_params=encoder_params, | |
in_channels=in_channels | |
) | |
assert decoder_attention_type in [None, "scse_3d"] | |
self.decoder = UnetDecoder_3D( | |
encoder_channels=self.encoder.out_channels, | |
decoder_channels=decoder_channels, | |
n_blocks=encoder_depth, | |
use_batchnorm=decoder_use_batchnorm, | |
center=True if encoder_name.startswith("vgg") else False, | |
deep_supervision=deep_supervision, | |
attention_type=decoder_attention_type, | |
) | |
self.segmentation_head = SegmentationHead_3D( | |
in_channels=decoder_channels[-1], | |
out_channels=classes, | |
dropout=dropout, | |
kernel_size=3, | |
upsampling=upsampling, | |
) | |
self.deep_supervision = deep_supervision | |
if self.deep_supervision: | |
self.supervisor_heads = [] | |
self.supervisor_heads.append( | |
SegmentationHead_3D( | |
in_channels=decoder_channels[-2], | |
out_channels=classes, | |
dropout=dropout, | |
kernel_size=3, | |
upsampling=upsampling, | |
) | |
) | |
self.supervisor_heads.append( | |
SegmentationHead_3D( | |
in_channels=decoder_channels[-3], | |
out_channels=classes, | |
dropout=dropout, | |
kernel_size=3, | |
upsampling=upsampling, | |
) | |
) | |
self.supervisor_heads = nn.Sequential(*self.supervisor_heads) | |
if aux_params is not None: | |
self.classification_head = ClassificationHead(in_channels=self.encoder.out_channels[-1], **aux_params) | |
else: | |
self.classification_head = None | |
self.name = "u-{}".format(encoder_name) | |
self.initialize() | |