Spaces:
Runtime error
Runtime error
import warnings | |
import torch.hub | |
import torch.nn as nn | |
from torchvision.models.video.resnet import BasicStem, BasicBlock, Bottleneck | |
from .utils import _generic_resnet, Conv3DDepthwise, BasicStem_Pool, IPConv3DDepthwise | |
__all__ = ["ir_csn_152", "ip_csn_152"] | |
def ir_csn_152(pretraining="", use_pool1=True, progress=False, **kwargs): | |
avail_pretrainings = [ | |
"ig65m_32frms", | |
"ig_ft_kinetics_32frms", | |
"sports1m_32frms", | |
"sports1m_ft_kinetics_32frms", | |
] | |
if pretraining in avail_pretrainings: | |
arch = "ir_csn_152_" + pretraining | |
pretrained = True | |
else: | |
arch = "ir_csn_152" | |
pretrained = False | |
model = _generic_resnet( | |
arch, | |
pretrained, | |
progress, | |
block=Bottleneck, | |
conv_makers=[Conv3DDepthwise] * 4, | |
layers=[3, 8, 36, 3], | |
stem=BasicStem_Pool if use_pool1 else BasicStem, | |
**kwargs, | |
) | |
return model | |
def ip_csn_152(pretraining="", use_pool1=True, progress=False, **kwargs): | |
avail_pretrainings = [ | |
"ig65m_32frms", | |
"ig_ft_kinetics_32frms", | |
"sports1m_32frms", | |
"sports1m_ft_kinetics_32frms", | |
] | |
if pretraining in avail_pretrainings: | |
arch = "ip_csn_152_" + pretraining | |
pretrained = True | |
else: | |
arch = "ip_csn_152" | |
pretrained = False | |
model = _generic_resnet( | |
arch, | |
pretrained, | |
progress, | |
block=Bottleneck, | |
conv_makers=[IPConv3DDepthwise] * 4, | |
layers=[3, 8, 36, 3], | |
stem=BasicStem_Pool if use_pool1 else BasicStem, | |
**kwargs, | |
) | |
return model | |