ianpan's picture
Add example
c0cba08
import cv2
import glob
import gradio as gr
import mediapy
import nibabel
import numpy as np
import shutil
import torch
import torch.nn.functional as F
from omegaconf import OmegaConf
from skp import builder
def window(x, WL=400, WW=2500):
lower, upper = WL - WW // 2, WL + WW // 2
x = np.clip(x, lower, upper)
x = x - lower
x = x / (upper - lower)
return (x * 255).astype("uint8")
def rescale(x):
x = x / 255.
x = x - 0.5
x = x * 2.0
return x
def get_cervical_spine_coordinates(x, original_shape):
# Assumes x is torch tensor with shape (1, 8, Z, H, W)
x = x.squeeze(0).numpy()[:7]
rescale_factor = [original_shape[0] / x.shape[1], original_shape[1] / x.shape[2], original_shape[2] / x.shape[3]]
coords_dict = {}
for level in range(x.shape[0]):
coords = np.where(x[level] >= 0.4)
coords = np.vstack(coords).astype("float")
coords[0] = coords[0] * rescale_factor[0]
coords[1] = coords[1] * rescale_factor[1]
coords[2] = coords[2] * rescale_factor[2]
coords = coords.astype("int")
coords_dict[level] = coords[0].min(), coords[0].max(),\
coords[1].min(), coords[1].max(),\
coords[2].min(), coords[2].max()
return coords_dict
def generate_segmentation_video(study):
img = nibabel.load(study).get_fdata()[:, ::-1, ::-1].transpose(2, 1, 0)
img = window(img)
X = torch.from_numpy(img).float().unsqueeze(0).unsqueeze(0)
X = F.interpolate(X, size=(192, 192, 192), mode="nearest")
X = rescale(X)
with torch.no_grad():
seg_output = seg_model(X)
seg_output = torch.sigmoid(seg_output)
c_spine_coords = get_cervical_spine_coordinates(seg_output, img.shape)
chunk_features = []
for level, coords in c_spine_coords.items():
z1, z2, h1, h2, w1, w2 = coords
X = torch.from_numpy(img[z1:z2+1, h1:h2+1, w1:w2+1]).float().unsqueeze(0).unsqueeze(0)
X = F.interpolate(X, size=(64, 288, 288), mode="nearest")
X = rescale(X)
with torch.no_grad():
chunk_features.append(x3d_model.extract_features(X))
chunk_features = torch.stack(chunk_features, dim=1)
with torch.no_grad():
final_output = torch.sigmoid(seq_model((chunk_features, torch.ones((chunk_features.size(1), )))))
final_output_dict = {f"C{i+1}": final_output[:, i].item() for i in range(7)}
final_output_dict["Overall"] = final_output[:, -1].item()
seg_output = F.interpolate(seg_output, size=img.shape, mode="nearest").squeeze(0).numpy()
# shape = (8, Z, H, W)
p_spine = seg_output[:7].sum(0)
# shape = (Z, H, W)
seg_output = np.argmax(seg_output[:7], axis=0) + 1
# shape = (Z, H, W)
seg_output[p_spine < 0.5] = 0
seg_output = (seg_output * 255 / 7).astype("uint8")
seg_output = np.stack([cv2.applyColorMap(_, cv2.COLORMAP_JET) for _ in seg_output])
seg_output[p_spine < 0.5] = 0
frames = []
skip = 8
for idx in range(0, img.shape[2], skip):
i = img[:, :, idx]
o = seg_output[:, :, idx]
i = cv2.cvtColor(i, cv2.COLOR_GRAY2RGB)
frame = np.concatenate((i, o), 1)
frames.append(frame)
mediapy.write_video("video.mp4", frames, fps=10)
return "video.mp4", final_output_dict
ffmpeg_path = shutil.which('ffmpeg')
mediapy.set_ffmpeg(ffmpeg_path)
config = OmegaConf.load("configs/pseudoseg000.yaml")
config.model.load_pretrained = "seg.ckpt"
config.model.params.encoder_params.pretrained = False
seg_model = builder.build_model(config).eval()
config = OmegaConf.load("configs/chunk000.yaml")
config.model.load_pretrained = "x3d.ckpt"
config.model.params.pretrained = False
x3d_model = builder.build_model(config).eval()
config = OmegaConf.load("configs/chunkseq003.yaml")
config.model.load_pretrained = "seq.ckpt"
seq_model = builder.build_model(config).eval()
examples = glob.glob("examples/*.nii.gz")
with gr.Blocks(theme="dark-peach") as demo:
select_study = gr.Dropdown(choices=sorted(examples), type="value", label="Select a study")
button_predict = gr.Button("Predict")
video_output = gr.Video(label="Cervical Spine Segmentation")
label_output = gr.Label(label="Fracture Predictions", show_label=False)
button_predict.click(fn=generate_segmentation_video,
inputs=select_study,
outputs=[video_output, label_output])
if __name__ == "__main__":
demo.launch(debug=True)