ianpan's picture
Initial commit
231edce
experiment:
seed: 88
save_dir: ../experiments/
data:
annotations: ../data/train_seg_whole_192_kfold_with_pseudo.csv
data_dir: ../data/
input: filename
target: label
outer_fold: 0
dataset:
name: NumpyChunkSegmentDataset
params:
segmentation_format: numpy
channels: grayscale
flip: true
transpose: true
invert: false
verbose: true
num_images: 192
z_lt: resample_resample
z_gt: resample_resample
one_hot_encode: true
num_classes: 8
add_foreground_channel: false
transform:
resize:
name: resize_ignore_3d
params:
imsize: [192, 192, 192]
augment:
null
crop:
null
preprocess:
name: Preprocessor
params:
image_range: [0, 255]
input_range: [0, 1]
mean: [0.5]
sdev: [0.5]
task:
name: SegmentationTask3D
params:
chunk_validation: true
model:
name: NetSegment3D
params:
architecture: DeepLabV3Plus_3D
encoder_name: x3d_l
encoder_params:
pretrained: true
output_stride: 16
z_strides: [2, 2, 2, 2, 2]
decoder_params:
upsampling: 4
deep_supervision: true
num_classes: 8
in_channels: 1
dropout: 0.2
loss:
name: SupervisorLoss
params:
segmentation_loss: DiceBCELoss
scale_factors: [0.25, 0.25]
loss_weights: [1.0, 0.25, 0.25]
loss_params:
dice_loss_params:
mode: multilabel
exponent: 2
smooth: 1.0
bce_loss_params:
smooth_factor: 0.01
pos_weight: 1.0
dice_loss_weight: 1.0
bce_loss_weight: 0.2
optimizer:
name: AdamW
params:
lr: 3.0e-4
weight_decay: 5.0e-4
scheduler:
name: CosineAnnealingLR
params:
final_lr: 0.0
train:
batch_size: 4
num_epochs: 10
evaluate:
batch_size: 1
metrics: [DSC]
monitor: dsc_ignore_mean
mode: max