Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .gem import GeM | |
def adaptive_avgmax_pool1d(x, output_size=1): | |
x_avg = F.adaptive_avg_pool1d(x, output_size) | |
x_max = F.adaptive_max_pool1d(x, output_size) | |
return 0.5 * (x_avg + x_max) | |
def adaptive_catavgmax_pool1d(x, output_size=1): | |
x_avg = F.adaptive_avg_pool1d(x, output_size) | |
x_max = F.adaptive_max_pool1d(x, output_size) | |
return torch.cat((x_avg, x_max), 1) | |
def select_adaptive_pool1d(x, pool_type='avg', output_size=1): | |
"""Selectable global pooling function with dynamic input kernel size | |
""" | |
if pool_type == 'avg': | |
x = F.adaptive_avg_pool1d(x, output_size) | |
elif pool_type == 'avgmax': | |
x = adaptive_avgmax_pool1d(x, output_size) | |
elif pool_type == 'catavgmax': | |
x = adaptive_catavgmax_pool1d(x, output_size) | |
elif pool_type == 'max': | |
x = F.adaptive_max_pool1d(x, output_size) | |
else: | |
assert False, 'Invalid pool type: %s' % pool_type | |
return x | |
class FastAdaptiveAvgPool1d(nn.Module): | |
def __init__(self, flatten=False): | |
super(FastAdaptiveAvgPool1d, self).__init__() | |
self.flatten = flatten | |
def forward(self, x): | |
return x.mean(2, keepdim=not self.flatten) | |
class AdaptiveAvgMaxPool1d(nn.Module): | |
def __init__(self, output_size=1): | |
super(AdaptiveAvgMaxPool1d, self).__init__() | |
self.output_size = output_size | |
def forward(self, x): | |
return adaptive_avgmax_pool1d(x, self.output_size) | |
class AdaptiveCatAvgMaxPool1d(nn.Module): | |
def __init__(self, output_size=1): | |
super(AdaptiveCatAvgMaxPool1d, self).__init__() | |
self.output_size = output_size | |
def forward(self, x): | |
return adaptive_catavgmax_pool1d(x, self.output_size) | |
class SelectAdaptivePool1d(nn.Module): | |
"""Selectable global pooling layer with dynamic input kernel size | |
""" | |
def __init__(self, output_size=1, pool_type='fast', flatten=False): | |
super(SelectAdaptivePool1d, self).__init__() | |
self.pool_type = pool_type or '' # convert other falsy values to empty string for consistent TS typing | |
self.flatten = nn.Flatten(1) if flatten else nn.Identity() | |
if pool_type == '': | |
self.pool = nn.Identity() # pass through | |
elif pool_type == 'fast': | |
assert output_size == 1 | |
self.pool = FastAdaptiveAvgPool1d(flatten) | |
self.flatten = nn.Identity() | |
elif pool_type == 'avg': | |
self.pool = nn.AdaptiveAvgPool1d(output_size) | |
elif pool_type == 'avgmax': | |
self.pool = AdaptiveAvgMaxPool1d(output_size) | |
elif pool_type == 'catavgmax': | |
self.pool = AdaptiveCatAvgMaxPool1d(output_size) | |
elif pool_type == 'max': | |
self.pool = nn.AdaptiveMaxPool1d(output_size) | |
else: | |
assert False, 'Invalid pool type: %s' % pool_type | |
def is_identity(self): | |
return not self.pool_type | |
def forward(self, x): | |
x = self.pool(x) | |
x = self.flatten(x) | |
return x | |
def __repr__(self): | |
return self.__class__.__name__ + ' (' \ | |
+ 'pool_type=' + self.pool_type \ | |
+ ', flatten=' + str(self.flatten) + ')' | |
def create_pool1d_layer(name, **kwargs): | |
assert name in ["avg", "max", "fast", "avgmax", "catavgmax", "gem"] | |
if name != "gem": | |
pool1d_layer = SelectAdaptivePool1d(pool_type=name, flatten=True) | |
elif name == "gem": | |
pool1d_layer = GeM(dim=1, **kwargs) | |
return pool1d_layer |