ianpan's picture
Initial commit
231edce
raw
history blame contribute delete
13.5 kB
# Copyright (c) OpenMMLab. All rights reserved.
import math
from abc import abstractmethod
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvModule(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=False,
activation="leaky_relu",
order=("conv", "norm", "act"),
act_inplace=True):
super().__init__()
self.conv = nn.Conv2d(in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias)
self.norm = nn.BatchNorm2d(out_channels)
if activation:
if activation == "leaky_relu":
self.act = nn.LeakyReLU(negative_slope=0.01, inplace=act_inplace)
elif activation == "silu":
self.act = nn.SiLU(inplace=act_inplace)
elif activation == "gelu":
self.act = nn.GELU()
else:
self.act = nn.Identity()
self.order = order
def forward(self, x):
for i in self.order:
x = getattr(self, i)(x)
return x
class BaseMergeCell(nn.Module):
"""The basic class for cells used in NAS-FPN and NAS-FCOS.
BaseMergeCell takes 2 inputs. After applying convolution
on them, they are resized to the target size. Then,
they go through binary_op, which depends on the type of cell.
If with_out_conv is True, the result of output will go through
another convolution layer.
Args:
in_channels (int): number of input channels in out_conv layer.
out_channels (int): number of output channels in out_conv layer.
with_out_conv (bool): Whether to use out_conv layer
out_conv_cfg (dict): Config dict for convolution layer, which should
contain "groups", "kernel_size", "padding", "bias" to build
out_conv layer.
out_norm_cfg (dict): Config dict for normalization layer in out_conv.
out_conv_order (tuple): The order of conv/norm/activation layers in
out_conv.
with_input1_conv (bool): Whether to use convolution on input1.
with_input2_conv (bool): Whether to use convolution on input2.
input_conv_cfg (dict): Config dict for building input1_conv layer and
input2_conv layer, which is expected to contain the type of
convolution.
Default: None, which means using conv2d.
input_norm_cfg (dict): Config dict for normalization layer in
input1_conv and input2_conv layer. Default: None.
upsample_mode (str): Interpolation method used to resize the output
of input1_conv and input2_conv to target size. Currently, we
support ['nearest', 'bilinear']. Default: 'nearest'.
"""
def __init__(self,
fused_channels=256,
out_channels=256,
with_out_conv=True,
out_conv_cfg=dict(
groups=1, kernel_size=3, padding=1, bias=True),
out_conv_order=('act', 'conv', 'norm'),
with_input1_conv=False,
with_input2_conv=False,
upsample_mode='nearest'):
super().__init__()
assert upsample_mode in ['nearest', 'bilinear']
self.with_out_conv = with_out_conv
self.with_input1_conv = with_input1_conv
self.with_input2_conv = with_input2_conv
self.upsample_mode = upsample_mode
if self.with_out_conv:
self.out_conv = ConvModule(
fused_channels,
out_channels,
**out_conv_cfg,
order=out_conv_order)
self.input1_conv = self._build_input_conv(
out_channels) if with_input1_conv else nn.Sequential()
self.input2_conv = self._build_input_conv(
out_channels) if with_input2_conv else nn.Sequential()
def _build_input_conv(self, channel):
return ConvModule(
channel,
channel,
3,
padding=1,
bias=True)
@abstractmethod
def _binary_op(self, x1, x2):
pass
def _resize(self, x, size):
if x.shape[-2:] == size:
return x
elif x.shape[-2:] < size:
return F.interpolate(x, size=size, mode=self.upsample_mode)
else:
if x.shape[-2] % size[-2] != 0 or x.shape[-1] % size[-1] != 0:
h, w = x.shape[-2:]
target_h, target_w = size
pad_h = math.ceil(h / target_h) * target_h - h
pad_w = math.ceil(w / target_w) * target_w - w
pad_l = pad_w // 2
pad_r = pad_w - pad_l
pad_t = pad_h // 2
pad_b = pad_h - pad_t
pad = (pad_l, pad_r, pad_t, pad_b)
x = F.pad(x, pad, mode='constant', value=0.0)
kernel_size = (x.shape[-2] // size[-2], x.shape[-1] // size[-1])
x = F.max_pool2d(x, kernel_size=kernel_size, stride=kernel_size)
return x
def forward(self, x1, x2, out_size=None):
assert x1.shape[:2] == x2.shape[:2]
assert out_size is None or len(out_size) == 2
if out_size is None: # resize to larger one
out_size = max(x1.size()[2:], x2.size()[2:])
x1 = self.input1_conv(x1)
x2 = self.input2_conv(x2)
x1 = self._resize(x1, out_size)
x2 = self._resize(x2, out_size)
x = self._binary_op(x1, x2)
if self.with_out_conv:
x = self.out_conv(x)
return x
class SumCell(BaseMergeCell):
def __init__(self, in_channels, out_channels, **kwargs):
super().__init__(in_channels, out_channels, **kwargs)
def _binary_op(self, x1, x2):
return x1 + x2
class ConcatCell(BaseMergeCell):
def __init__(self, in_channels, out_channels, **kwargs):
super().__init__(in_channels * 2, out_channels, **kwargs)
def _binary_op(self, x1, x2):
ret = torch.cat([x1, x2], dim=1)
return ret
class GlobalPoolingCell(BaseMergeCell):
def __init__(self, in_channels=None, out_channels=None, **kwargs):
super().__init__(in_channels, out_channels, **kwargs)
self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
def _binary_op(self, x1, x2):
x2_att = self.global_pool(x2).sigmoid()
return x2 + x2_att * x1
class Conv3x3GNReLU(nn.Module):
def __init__(self, in_channels, out_channels, upsample=False):
super().__init__()
self.upsample = upsample
self.block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, (3, 3), stride=1, padding=1, bias=False),
nn.GroupNorm(32, out_channels),
nn.ReLU(inplace=True),
)
def forward(self, x):
x = self.block(x)
if self.upsample:
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
return x
class SegmentationBlock(nn.Module):
def __init__(self, in_channels, out_channels, n_upsamples=0):
super().__init__()
blocks = [Conv3x3GNReLU(in_channels, out_channels, upsample=bool(n_upsamples))]
if n_upsamples > 1:
for _ in range(1, n_upsamples):
blocks.append(Conv3x3GNReLU(out_channels, out_channels, upsample=True))
self.block = nn.Sequential(*blocks)
def forward(self, x):
return self.block(x)
class MergeBlock(nn.Module):
def __init__(self, policy):
super().__init__()
if policy not in ["add", "cat"]:
raise ValueError("`merge_policy` must be one of: ['add', 'cat'], got {}".format(policy))
self.policy = policy
def forward(self, x):
if self.policy == "add":
return sum(x)
elif self.policy == "cat":
return torch.cat(x, dim=1)
else:
raise ValueError("`merge_policy` must be one of: ['add', 'cat'], got {}".format(self.policy))
class NASFPNDecoder(nn.Module):
"""NAS-FPN.
Implementation of `NAS-FPN: Learning Scalable Feature Pyramid Architecture
for Object Detection <https://arxiv.org/abs/1904.07392>`_
Args:
in_channels (List[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale)
depth (int): Number of output scales.
stack_times (int): The number of times the pyramid architecture will
be stacked.
"""
def __init__(self,
in_channels,
pyramid_channels=256,
segmentation_channels=128,
depth=5,
stack_times=3,
merge_policy="add",
deep_supervision=False):
super().__init__()
assert isinstance(in_channels, (list, tuple))
self.in_channels = in_channels
self.pyramid_channels = pyramid_channels
self.num_ins = len(in_channels) # num of input feature levels
self.depth = depth # num of output feature levels
assert self.num_ins == self.depth
self.stack_times = stack_times
self.out_channels = segmentation_channels if merge_policy == "add" else segmentation_channels * 5
self.deep_supervision = deep_supervision
# add lateral connections
self.lateral_convs = nn.ModuleList()
for i in range(depth):
l_conv = ConvModule(
in_channels[i],
pyramid_channels,
1,
activation=None)
self.lateral_convs.append(l_conv)
# add NAS FPN connections
self.fpn_stages = nn.ModuleList()
for _ in range(self.stack_times):
stage = nn.ModuleDict()
# gp(p6, p4) -> p4_1
stage['gp_64_4'] = GlobalPoolingCell(
in_channels=pyramid_channels,
out_channels=pyramid_channels)
# sum(p4_1, p4) -> p4_2
stage['sum_44_4'] = SumCell(
in_channels=pyramid_channels,
out_channels=pyramid_channels)
# sum(p4_2, p3) -> p3_out
stage['sum_43_3'] = SumCell(
in_channels=pyramid_channels,
out_channels=pyramid_channels)
# sum(p3_out, p4_2) -> p4_out
stage['sum_34_4'] = SumCell(
in_channels=pyramid_channels,
out_channels=pyramid_channels)
# sum(p5, gp(p4_out, p3_out)) -> p5_out
stage['gp_43_5'] = GlobalPoolingCell(with_out_conv=False)
stage['sum_55_5'] = SumCell(
in_channels=pyramid_channels,
out_channels=pyramid_channels)
# sum(p7, gp(p5_out, p4_2)) -> p7_out
stage['gp_54_7'] = GlobalPoolingCell(with_out_conv=False)
stage['sum_77_7'] = SumCell(
in_channels=pyramid_channels,
out_channels=pyramid_channels)
# gp(p7_out, p5_out) -> p6_out
stage['gp_75_6'] = GlobalPoolingCell(
in_channels=pyramid_channels,
out_channels=pyramid_channels)
self.fpn_stages.append(stage)
self.seg_blocks = nn.ModuleList(
[
SegmentationBlock(pyramid_channels, segmentation_channels, n_upsamples=n_upsamples)
for n_upsamples in [4, 3, 2, 1, 0]
]
)
self.merge = MergeBlock(merge_policy)
def forward(self, *features):
"""Forward function."""
# build P1-P5
features = [
lateral_conv(features[i])
for i, lateral_conv in enumerate(self.lateral_convs)
]
# This is actually P1-P5 but too lazy to change the naming scheme
p3, p4, p5, p6, p7 = features[-5:]
for stage in self.fpn_stages:
# gp(p6, p4) -> p4_1
p4_1 = stage['gp_64_4'](p6, p4, out_size=p4.shape[-2:])
# sum(p4_1, p4) -> p4_2
p4_2 = stage['sum_44_4'](p4_1, p4, out_size=p4.shape[-2:])
# sum(p4_2, p3) -> p3_out
p3 = stage['sum_43_3'](p4_2, p3, out_size=p3.shape[-2:])
# sum(p3_out, p4_2) -> p4_out
p4 = stage['sum_34_4'](p3, p4_2, out_size=p4.shape[-2:])
# sum(p5, gp(p4_out, p3_out)) -> p5_out
p5_tmp = stage['gp_43_5'](p4, p3, out_size=p5.shape[-2:])
p5 = stage['sum_55_5'](p5, p5_tmp, out_size=p5.shape[-2:])
# sum(p7, gp(p5_out, p4_2)) -> p7_out
p7_tmp = stage['gp_54_7'](p5, p4_2, out_size=p7.shape[-2:])
p7 = stage['sum_77_7'](p7, p7_tmp, out_size=p7.shape[-2:])
# gp(p7_out, p5_out) -> p6_out
p6 = stage['gp_75_6'](p7, p5, out_size=p6.shape[-2:])
feature_pyramid = [seg_block(p) for seg_block, p in zip(self.seg_blocks, [p7, p6, p5, p4, p3])]
x = self.merge(feature_pyramid)
if self.deep_supervision and self.training:
return p4, p3, x
return x