File size: 6,124 Bytes
756da1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e9f2d3
756da1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import cv2
import gradio as gr
import numpy as np
import spaces
import torch
import torch.nn.functional as F

from einops import rearrange

from transformers import AutoModel


def calculate_ctr(mask: np.ndarray) -> float:
    # mask.ndim = 2, (height, width)
    lungs = np.zeros_like(mask)
    lungs[mask == 1] = 1
    lungs[mask == 2] = 1
    heart = (mask == 3).astype("int")
    y, x = np.stack(np.where(lungs == 1))
    lung_min = x.min()
    lung_max = x.max()
    y, x = np.stack(np.where(heart == 1))
    heart_min = x.min()
    heart_max = x.max()
    lung_range = lung_max - lung_min
    heart_range = heart_max - heart_min
    return heart_range / lung_range


def make_overlay(
    img: np.ndarray, mask: np.ndarray, alpha: float = 0.7
) -> np.ndarray[np.uint8]:
    overlay = alpha * img + (1 - alpha) * mask
    return overlay.astype(np.uint8)


@spaces.GPU
def predict(Radiograph):
    rg = cv2.cvtColor(Radiograph, cv2.COLOR_GRAY2RGB)
    x = cxr_info_model.preprocess(Radiograph)
    x = torch.from_numpy(x).float().to(device)
    x = rearrange(x, "h w -> 1 1 h w")

    with torch.inference_mode():
        info_out = cxr_info_model(x)

    info_mask = info_out["mask"]
    h, w = rg.shape[:2]
    info_mask = F.interpolate(info_mask, size=(h, w), mode="bilinear")
    info_mask = info_mask.argmax(1)[0]
    info_mask_3ch = F.one_hot(info_mask, num_classes=4)[..., 1:]
    info_mask_3ch = (info_mask_3ch.cpu().numpy() * 255).astype(np.uint8)
    info_overlay = make_overlay(rg, info_mask_3ch[..., ::-1])

    view = info_out["view"].argmax(1).item()
    info_string = ""
    if view in {0, 1}:
        info_string += "This is a frontal chest radiograph "
        if view == 0:
            info_string += "(AP projection)."
        elif view == 1:
            info_string += "(PA projection)."
    elif view == 2:
        info_string += "This is a lateral chest radiograph."

    age = info_out["age"].item()
    info_string += f"\nThe patient's predicted age is {round(age)} years."
    sex = info_out["female"].item()
    if sex < 0.5:
        sex = "male"
    else:
        sex = "female"
    info_string += f"\nThe patient's predicted sex is {sex}."

    if view in {0, 1}:
        ctr = calculate_ctr(info_mask.cpu().numpy())
        info_string += f"\nThe estimated cardiothoracic ratio (CTR) is {ctr:0.2f}."
        if view == 0:
            info_string += (
                "\nNote that the cardiac silhuoette is magnified in the AP projection."
            )

    if view == 2:
        info_string += (
            "\nNOTE: The below outputs are NOT VALID for lateral radiographs."
        )

    x = pna_model.preprocess(Radiograph)
    x = torch.from_numpy(x).float().to(device)
    x = rearrange(x, "h w -> 1 1 h w")

    with torch.inference_mode():
        pna_out = pna_model(x)

    pna_mask = pna_out["mask"]
    h, w = rg.shape[:2]
    pna_mask = F.interpolate(pna_mask, size=(h, w), mode="bilinear")
    pna_mask = (pna_mask.cpu().numpy()[0, 0] * 255).astype(np.uint8)
    pna_mask = cv2.applyColorMap(pna_mask, cv2.COLORMAP_JET)
    pna_overlay = make_overlay(rg, pna_mask[..., ::-1])

    x = ptx_model.preprocess(Radiograph)
    x = torch.from_numpy(x).float().to(device)
    x = rearrange(x, "h w -> 1 1 h w")

    with torch.inference_mode():
        ptx_out = ptx_model(x)

    ptx_mask = ptx_out["mask"]
    h, w = rg.shape[:2]
    ptx_mask = F.interpolate(ptx_mask, size=(h, w), mode="bilinear")
    ptx_mask = (ptx_mask.cpu().numpy()[0, 0] * 255).astype(np.uint8)
    ptx_mask = cv2.applyColorMap(ptx_mask, cv2.COLORMAP_JET)
    ptx_overlay = make_overlay(rg, ptx_mask[..., ::-1])

    preds = {"Pneumonia": pna_out["cls"].item(), "Pneumothorax": ptx_out["cls"].item()}
    return [info_string, preds, info_overlay, pna_overlay, ptx_overlay]


image = gr.Image(image_mode="L")
info_textbox = gr.Textbox(show_label=False)
labels = gr.Label(show_label=False, show_heading=False)
heatmap1 = gr.Image(image_mode="RGB", label="Heart & Lungs")
heatmap2 = gr.Image(image_mode="RGB", label="Pneumonia")
heatmap3 = gr.Image(image_mode="RGB", label="Pneumothorax")

with gr.Blocks() as demo:
    gr.Markdown(
        """
    # Deep Learning for Chest Radiographs

    This demo uses 3 models for chest radiographs:
    1) Heart and lungs segmentation, with age, view, and sex prediction <https://huggingface.co/ianpan/chest-x-ray-basic>
    2) Pneumonia classification and segmentation <https://huggingface.co/ianpan/pneumonia-cxr>
    3) Pneumothorax classification and segmentation <https://huggingface.co/ianpan/pneumothorax-cxr>

    Note that the pneumonia and pneumothorax heatmaps produced by this model are based on pixel-level segmentation maps.
    Thus, they are expected to be more accurate than non-explicit localization methods such as GradCAM.

    The example radiograph is my own, from when I had pneumonia. 

    This model is for demonstration purposes only and has NOT been approved by any regulatory agency for clinical use. The user assumes
    any and all responsibility regarding their own use of this model and its outputs. Do NOT upload any images containing protected
    health information, as this demonstration is not compliant with patient privacy laws.

    Created by: Ian Pan, <https://ianpan.me>
    
    Last updated: December 27, 2024
    """
    )
    gr.Interface(
        fn=predict,
        inputs=image,
        outputs=[info_textbox, labels, heatmap1, heatmap2, heatmap3],
        examples=["examples/cxr.png"],
        cache_examples=True,
    )

if __name__ == "__main__":
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"Using device `{device}` ...")

    cxr_info_model = (
        AutoModel.from_pretrained("ianpan/chest-x-ray-basic", trust_remote_code=True)
        .eval()
        .to(device)
    )
    pna_model = (
        AutoModel.from_pretrained("ianpan/pneumonia-cxr", trust_remote_code=True)
        .eval()
        .to(device)
    )
    ptx_model = (
        AutoModel.from_pretrained("ianpan/pneumothorax-cxr", trust_remote_code=True)
        .eval()
        .to(device)
    )

    demo.launch(share=True)