Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,405 Bytes
5269ad1 f97dae7 5b7f169 f97dae7 026d799 5b7f169 182a21a 5269ad1 f97dae7 2b6005c 5269ad1 0f55f50 f97dae7 0f55f50 1eece35 5b7f169 809aedc 6047b61 0f55f50 33193a0 2e81d77 2b6005c 2cb730a f97dae7 5b7f169 1eece35 f97dae7 0caab14 5b7f169 6047b61 2b6005c 6047b61 5269ad1 6047b61 2b6005c 6047b61 5269ad1 f97dae7 5269ad1 6047b61 5269ad1 2b6005c 5269ad1 2b6005c f97dae7 2b6005c 5269ad1 6047b61 5269ad1 5b7f169 6047b61 2b6005c 6047b61 f97dae7 6047b61 f97dae7 6047b61 f97dae7 5b7f169 6047b61 4bd44f6 6047b61 1eece35 6047b61 5b7f169 6047b61 4bd44f6 6047b61 5b7f169 6047b61 4bd44f6 5b7f169 2e81d77 c786139 6047b61 2e81d77 5b7f169 f97dae7 5b7f169 2b6005c fb6a6b8 6047b61 f97dae7 5269ad1 0f55f50 6047b61 0caab14 6047b61 4bd44f6 0f55f50 2b6005c 6047b61 2b6005c f97dae7 bce909e 2b6005c 42e2cdc 2b6005c 6047b61 0f55f50 2b6005c 0f55f50 f97dae7 0f55f50 d46878a 0f55f50 5b7f169 20a9c66 5b7f169 d46878a 5b7f169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import math
import os
from time import sleep, time
import spaces
from ibm_watsonx_ai.client import APIClient
from ibm_watsonx_ai.foundation_models import ModelInference
from transformers import AutoModelForCausalLM, AutoTokenizer
from logger import logger
safe_token = "No"
risky_token = "Yes"
nlogprobs = 20
inference_engine = os.getenv("INFERENCE_ENGINE", "TORCH")
logger.debug(f"Inference engine is: '{inference_engine}'")
if inference_engine == "TORCH":
import torch
device = torch.device("cuda")
model_path = os.getenv("MODEL_PATH", "ibm-granite/granite-guardian-3.1-8b")
logger.debug(f"model_path is {model_path}")
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
model = model.to(device).eval()
elif inference_engine == "WATSONX":
client = APIClient(
credentials={"api_key": os.getenv("WATSONX_API_KEY"), "url": "https://us-south.ml.cloud.ibm.com"}
)
client.set.default_project(os.getenv("WATSONX_PROJECT_ID"))
hf_model_path = "ibm-granite/granite-guardian-3.1-8b"
tokenizer = AutoTokenizer.from_pretrained(hf_model_path)
model_id = "ibm/granite-guardian-3-8b" # 8B Model: "ibm/granite-guardian-3-8b"
model = ModelInference(model_id=model_id, api_client=client)
def get_probablities_watsonx(top_tokens_list):
safe_token_prob = 1e-50
risky_token_prob = 1e-50
for top_tokens in top_tokens_list:
for token in top_tokens:
if token["text"].strip().lower() == safe_token.lower():
safe_token_prob += math.exp(token["logprob"])
if token["text"].strip().lower() == risky_token.lower():
risky_token_prob += math.exp(token["logprob"])
probabilities = softmax([math.log(safe_token_prob), math.log(risky_token_prob)])
return probabilities
def parse_output_watsonx(generated_tokens_list):
label, prob_of_risk = None, None
if nlogprobs > 0:
top_tokens_list = [generated_tokens["top_tokens"] for generated_tokens in generated_tokens_list]
prob = get_probablities_watsonx(top_tokens_list)
prob_of_risk = prob[1]
res = next(iter(generated_tokens_list))["text"].strip()
if risky_token.lower() == res.lower():
label = risky_token
elif safe_token.lower() == res.lower():
label = safe_token
else:
label = "Failed"
return label, prob_of_risk
def generate_tokens_watsonx(prompt):
result = model.generate(
prompt=[prompt],
params={
"decoding_method": "greedy",
"max_new_tokens": 20,
"temperature": 0,
"return_options": {"token_logprobs": True, "generated_tokens": True, "input_text": True, "top_n_tokens": 5},
},
)
return result[0]["results"][0]["generated_tokens"]
def softmax(values):
exp_values = [math.exp(v) for v in values]
total = sum(exp_values)
return [v / total for v in exp_values]
def get_probablities(logprobs):
safe_token_prob = 1e-50
unsafe_token_prob = 1e-50
for gen_token_i in logprobs:
for logprob, index in zip(gen_token_i.values.tolist()[0], gen_token_i.indices.tolist()[0]):
decoded_token = tokenizer.convert_ids_to_tokens(index)
if decoded_token.strip().lower() == safe_token.lower():
safe_token_prob += math.exp(logprob)
if decoded_token.strip().lower() == risky_token.lower():
unsafe_token_prob += math.exp(logprob)
probabilities = torch.softmax(torch.tensor([math.log(safe_token_prob), math.log(unsafe_token_prob)]), dim=0)
return probabilities
def parse_output(output, input_len):
label, prob_of_risk = None, None
if nlogprobs > 0:
list_index_logprobs_i = [
torch.topk(token_i, k=nlogprobs, largest=True, sorted=True) for token_i in list(output.scores)[:-1]
]
if list_index_logprobs_i is not None:
prob = get_probablities(list_index_logprobs_i)
prob_of_risk = prob[1]
res = tokenizer.decode(output.sequences[:, input_len:][0], skip_special_tokens=True).strip()
if risky_token.lower() == res.lower():
label = risky_token
elif safe_token.lower() == res.lower():
label = safe_token
else:
label = "Failed"
return label, prob_of_risk.item()
@spaces.GPU
def get_prompt(messages, criteria_name, tokenize=False, add_generation_prompt=False, return_tensors=None):
logger.debug("Creating prompt for the model.")
logger.debug(f"Messages used to create the prompt are: \n{messages}")
logger.debug("Criteria name is: " + criteria_name)
if criteria_name == "general_harm":
criteria_name = "harm"
elif criteria_name == "function_calling_hallucination":
criteria_name = "function_call"
logger.debug("Criteria name was changed too: " + criteria_name)
logger.debug(f"Tokenize: {tokenize}")
logger.debug(f"add_generation_prompt: {add_generation_prompt}")
logger.debug(f"return_tensors: {return_tensors}")
guardian_config = {"risk_name": criteria_name if criteria_name != "general_harm" else "harm"}
logger.debug(f"guardian_config is: {guardian_config}")
prompt = tokenizer.apply_chat_template(
messages,
guardian_config=guardian_config,
tokenize=tokenize,
add_generation_prompt=add_generation_prompt,
return_tensors=return_tensors,
)
logger.debug(f"Prompt (type {type(prompt)}) is: {prompt}")
return prompt
@spaces.GPU
def get_guardian_response(messages, criteria_name):
start = time()
if inference_engine == "MOCK":
logger.debug("Returning mocked model result.")
sleep(1)
label, prob_of_risk = "Yes", 0.97
elif inference_engine == "WATSONX":
chat = get_prompt(messages, criteria_name)
logger.debug(f"Prompt is \n{chat}")
generated_tokens = generate_tokens_watsonx(chat)
label, prob_of_risk = parse_output_watsonx(generated_tokens)
elif inference_engine == "TORCH":
input_ids = get_prompt(
messages=messages,
criteria_name=criteria_name,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
).to(model.device)
# logger.debug(f"input_ids are: {input_ids}")
input_len = input_ids.shape[1]
logger.debug(f"input_len is: {input_len}")
with torch.no_grad():
# output = model.generate(chat, sampling_params, use_tqdm=False)
output = model.generate(
input_ids,
do_sample=False,
max_new_tokens=nlogprobs,
return_dict_in_generate=True,
output_scores=True,
)
# logger.debug(f"model output is:\n{output}")
label, prob_of_risk = parse_output(output, input_len)
logger.debug(f"Label is: {label}")
logger.debug(f"Prob_of_risk is: {prob_of_risk}")
else:
raise Exception("Environment variable 'INFERENCE_ENGINE' must be one of [WATSONX, MOCK, TORCH]")
logger.debug(f"Model generated label: {label}")
logger.debug(f"Model prob_of_risk: {prob_of_risk}")
end = time()
total = end - start
logger.debug(f"The evaluation took {total} secs")
return {"assessment": label, "certainty": prob_of_risk}
|