carlosgomes98's picture
remove channels last
c694f3a
######### pull files
import os
from huggingface_hub import hf_hub_download
config_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-burn-scar", filename="burn_scars_Prithvi_100M.py", token=os.environ.get("token"))
ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-burn-scar", filename='burn_scars_Prithvi_100M.pth', token=os.environ.get("token"))
##########
import argparse
from mmcv import Config
from mmseg.models import build_segmentor
from mmseg.datasets.pipelines import Compose, LoadImageFromFile
import rasterio
import torch
from mmseg.apis import init_segmentor
from mmcv.parallel import collate, scatter
import numpy as np
import glob
import os
import time
import numpy as np
import gradio as gr
from functools import partial
import pdb
import matplotlib.pyplot as plt
def open_tiff(fname):
with rasterio.open(fname, "r") as src:
data = src.read()
return data
def write_tiff(img_wrt, filename, metadata):
"""
It writes a raster image to file.
:param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
:param filename: file path to the output file
:param metadata: metadata to use to write the raster to disk
:return:
"""
with rasterio.open(filename, "w", **metadata) as dest:
if len(img_wrt.shape) == 2:
img_wrt = img_wrt[None]
for i in range(img_wrt.shape[0]):
dest.write(img_wrt[i, :, :], i + 1)
return filename
def get_meta(fname):
with rasterio.open(fname, "r") as src:
meta = src.meta
return meta
def preprocess_example(example_list):
example_list = [os.path.join(os.path.abspath(''), x) for x in example_list]
return example_list
def inference_segmentor(model, imgs, custom_test_pipeline=None):
"""Inference image(s) with the segmentor.
Args:
model (nn.Module): The loaded segmentor.
imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
images.
Returns:
(list[Tensor]): The segmentation result.
"""
cfg = model.cfg
device = next(model.parameters()).device # model device
# build the data pipeline
test_pipeline = [LoadImageFromFile()] + cfg.data.test.pipeline[1:] if custom_test_pipeline == None else custom_test_pipeline
test_pipeline = Compose(test_pipeline)
# prepare data
data = []
imgs = imgs if isinstance(imgs, list) else [imgs]
for img in imgs:
img_data = {'img_info': {'filename': img}}
img_data = test_pipeline(img_data)
data.append(img_data)
# print(data.shape)
data = collate(data, samples_per_gpu=len(imgs))
if next(model.parameters()).is_cuda:
# data = collate(data, samples_per_gpu=len(imgs))
# scatter to specified GPU
data = scatter(data, [device])[0]
else:
# img_metas = scatter(data['img_metas'],'cpu')
# data['img_metas'] = [i.data[0] for i in data['img_metas']]
img_metas = data['img_metas'].data[0]
img = data['img']
data = {'img': img, 'img_metas':img_metas}
with torch.no_grad():
result = model(return_loss=False, rescale=True, **data)
return result
def inference_on_file(target_image, model, custom_test_pipeline):
target_image = target_image.name
# print(type(target_image))
# output_image = target_image.replace('.tif', '_pred.tif')
time_taken=-1
st = time.time()
print('Running inference...')
result = inference_segmentor(model, target_image, custom_test_pipeline)
print("Output has shape: " + str(result[0].shape))
# prep outputs
mask = open_tiff(target_image)
rgb = mask[[5, 3, 2], :, :].transpose((1,2,0))
meta = get_meta(target_image)
mask = np.where(mask == meta['nodata'], 1, 0)
mask = np.max(mask, axis=0)[None]
rgb = np.where(mask.transpose((1,2,0)) == 1, 0, rgb)
rgb = np.where(rgb < 0, 0, rgb)
rgb = np.where(rgb > 1, 1, rgb)
prediction = np.where(mask == 1, 0, result[0]*255)
et = time.time()
time_taken = np.round(et - st, 1)
print(f'Inference completed in {str(time_taken)} seconds')
return rgb, prediction[0]
def process_test_pipeline(custom_test_pipeline, bands=None):
# change extracted bands if necessary
if bands is not None:
extract_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'] == 'BandsExtract' ]
if len(extract_index) > 0:
custom_test_pipeline[extract_index[0]]['bands'] = eval(bands)
collect_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'].find('Collect') > -1]
# adapt collected keys if necessary
if len(collect_index) > 0:
keys = ['img_info', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']
custom_test_pipeline[collect_index[0]]['meta_keys'] = keys
return custom_test_pipeline
config = Config.fromfile(config_path)
config.model.backbone.pretrained=None
model = init_segmentor(config, ckpt, device='cpu')
custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)
with gr.Blocks() as demo:
gr.Markdown(value='# Prithvi burn scars detection')
gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to detect burn scars. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-burn-scar).\n
The user needs to provide an HLS geotiff image, including the following channels in reflectance units (e.g. 0-1): Blue, Green, Red, Narrow NIR, SWIR, SWIR 2.
''')
with gr.Row():
with gr.Column():
inp = gr.File()
btn = gr.Button("Submit")
with gr.Row():
gr.Markdown(value='### Input color composite (SWIR, Narrow NIR, Red)')
gr.Markdown(value='### Model prediction (Black: No burn scar; White: Burn scar)')
with gr.Row():
out1=gr.Image(image_mode='RGB')
out2 = gr.Image(image_mode='L')
btn.click(fn=func, inputs=inp, outputs=[out1, out2])
with gr.Row():
gr.Examples(examples=["subsetted_512x512_HLS.S30.T10TGS.2020245.v1.4_merged.tif",
"subsetted_512x512_HLS.S30.T10TGS.2018285.v1.4_merged.tif",
"subsetted_512x512_HLS.S30.T10UGV.2020218.v1.4_merged.tif"],
inputs=inp,
outputs=[out1, out2],
preprocess=preprocess_example,
fn=func,
cache_examples=True,
)
demo.launch()