######### pull files import os from huggingface_hub import hf_hub_download config_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification", filename="multi_temporal_crop_classification_Prithvi_100M.py", token=os.environ.get("token")) ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification", filename='multi_temporal_crop_classification_Prithvi_100M.pth', token=os.environ.get("token")) ########## import argparse from mmcv import Config from mmseg.models import build_segmentor from mmseg.datasets.pipelines import Compose, LoadImageFromFile import rasterio import torch from mmseg.apis import init_segmentor from mmcv.parallel import collate, scatter import numpy as np import glob import os import time import numpy as np import gradio as gr from functools import partial import pdb import matplotlib.pyplot as plt from skimage import exposure cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190)}, {'value': 2, 'label': 'Forest', 'rgb': (149,206,147)}, {'value': 3, 'label': 'Corn', 'rgb': (255,212,0)}, {'value': 4, 'label': 'Soybeans', 'rgb': (38,115,0)}, {'value': 5, 'label': 'Wetlands', 'rgb': (128,179,179)}, {'value': 6, 'label': 'Developed/Barren', 'rgb': (156,156,156)}, {'value': 7, 'label': 'Open Water', 'rgb': (77,112,163)}, {'value': 8, 'label': 'Winter Wheat', 'rgb': (168,112,0)}, {'value': 9, 'label': 'Alfalfa', 'rgb': (255,168,227)}, {'value': 10, 'label': 'Fallow/Idle cropland', 'rgb': (191,191,122)}, {'value': 11, 'label': 'Cotton', 'rgb':(255,38,38)}, {'value': 12, 'label': 'Sorghum', 'rgb':(255,158,15)}, {'value': 13, 'label': 'Other', 'rgb':(0,175,77)}] def apply_color_map(rgb, color_map=cdl_color_map): rgb_mapped = rgb.copy() for map_tmp in cdl_color_map: for i in range(3): rgb_mapped[i] = np.where((rgb[0] == map_tmp['value']) & (rgb[1] == map_tmp['value']) & (rgb[2] == map_tmp['value']), map_tmp['rgb'][i], rgb_mapped[i]) return rgb_mapped def stretch_rgb(rgb): ls_pct=0 pLow, pHigh = np.percentile(rgb[~np.isnan(rgb)], (ls_pct,100-ls_pct)) img_rescale = exposure.rescale_intensity(rgb, in_range=(pLow,pHigh)) return img_rescale def open_tiff(fname): with rasterio.open(fname, "r") as src: data = src.read() return data def write_tiff(img_wrt, filename, metadata): """ It writes a raster image to file. :param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands) :param filename: file path to the output file :param metadata: metadata to use to write the raster to disk :return: """ with rasterio.open(filename, "w", **metadata) as dest: if len(img_wrt.shape) == 2: img_wrt = img_wrt[None] for i in range(img_wrt.shape[0]): dest.write(img_wrt[i, :, :], i + 1) return filename def get_meta(fname): with rasterio.open(fname, "r") as src: meta = src.meta return meta def preprocess_example(example_list): example_list = [os.path.join(os.path.abspath(''), x) for x in example_list] return example_list def inference_segmentor(model, imgs, custom_test_pipeline=None): """Inference image(s) with the segmentor. Args: model (nn.Module): The loaded segmentor. imgs (str/ndarray or list[str/ndarray]): Either image files or loaded images. Returns: (list[Tensor]): The segmentation result. """ cfg = model.cfg device = next(model.parameters()).device # model device # build the data pipeline test_pipeline = [LoadImageFromFile()] + cfg.data.test.pipeline[1:] if custom_test_pipeline == None else custom_test_pipeline test_pipeline = Compose(test_pipeline) # prepare data data = [] imgs = imgs if isinstance(imgs, list) else [imgs] for img in imgs: img_data = {'img_info': {'filename': img}} img_data = test_pipeline(img_data) data.append(img_data) # print(data.shape) data = collate(data, samples_per_gpu=len(imgs)) if next(model.parameters()).is_cuda: # data = collate(data, samples_per_gpu=len(imgs)) # scatter to specified GPU data = scatter(data, [device])[0] else: # img_metas = scatter(data['img_metas'],'cpu') # data['img_metas'] = [i.data[0] for i in data['img_metas']] img_metas = data['img_metas'].data[0] img = data['img'] data = {'img': img, 'img_metas':img_metas} with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) return result def process_rgb(input, mask, indexes): rgb = stretch_rgb((input[indexes, :, :].transpose((1,2,0))/10000*255).astype(np.uint8)) rgb = np.where(mask.transpose((1,2,0)) == 1, 0, rgb) rgb = np.where(rgb < 0, 0, rgb) rgb = np.where(rgb > 255, 255, rgb) return rgb def inference_on_file(target_image, model, custom_test_pipeline): target_image = target_image.name time_taken=-1 st = time.time() print('Running inference...') try: result = inference_segmentor(model, target_image, custom_test_pipeline) except: print('Error: Try different channels order.') model.cfg.data.test.pipeline[0]['channels_last'] = True result = inference_segmentor(model, target_image, custom_test_pipeline) print("Output has shape: " + str(result[0].shape)) ##### get metadata mask input = open_tiff(target_image) meta = get_meta(target_image) mask = np.where(input == meta['nodata'], 1, 0) mask = np.max(mask, axis=0)[None] rgb1 = process_rgb(input, mask, [2, 1, 0]) rgb2 = process_rgb(input, mask, [8, 7, 6]) rgb3 = process_rgb(input, mask, [14, 13, 12]) result[0] = np.where(mask == 1, 0, result[0]) et = time.time() time_taken = np.round(et - st, 1) print(f'Inference completed in {str(time_taken)} seconds') output=result[0][0] + 1 output = np.vstack([output[None], output[None], output[None]]).astype(np.uint8) output=apply_color_map(output).transpose((1,2,0)) return rgb1,rgb2,rgb3,output def process_test_pipeline(custom_test_pipeline, bands=None): # change extracted bands if necessary if bands is not None: extract_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'] == 'BandsExtract' ] if len(extract_index) > 0: custom_test_pipeline[extract_index[0]]['bands'] = eval(bands) collect_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'].find('Collect') > -1] # adapt collected keys if necessary if len(collect_index) > 0: keys = ['img_info', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg'] custom_test_pipeline[collect_index[0]]['meta_keys'] = keys return custom_test_pipeline config = Config.fromfile(config_path) config.model.backbone.pretrained=None model = init_segmentor(config, ckpt, device='cpu') custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None) func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline) with gr.Blocks() as demo: gr.Markdown(value='# Prithvi multi temporal crop classification') gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order. ''') with gr.Row(): with gr.Column(): inp = gr.File() btn = gr.Button("Submit") with gr.Row(): inp1=gr.Image(image_mode='RGB', scale=10, label='T1') inp2=gr.Image(image_mode='RGB', scale=10, label='T2') inp3=gr.Image(image_mode='RGB', scale=10, label='T3') out = gr.Image(image_mode='RGB', scale=10, label='Model prediction') # gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False) btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out]) with gr.Row(): with gr.Column(): gr.Examples(examples=["chip_102_345_merged.tif", "chip_104_104_merged.tif", "chip_109_421_merged.tif"], inputs=inp, outputs=[inp1, inp2, inp3, out], preprocess=preprocess_example, fn=func, cache_examples=True) with gr.Column(): gr.Markdown(value='### Model prediction legend') gr.Image(value='Legend.png', image_mode='RGB', show_label=False) demo.launch()