ipd commited on
Commit
3e0c9bd
1 Parent(s): 6747ba1

minor fixes

Browse files
Files changed (1) hide show
  1. models/fm4m.py +14 -7
models/fm4m.py CHANGED
@@ -308,7 +308,8 @@ def single_modal(model,dataset, downstream_model,params):
308
  verbose=False)
309
  n_samples = np.minimum(1000, len(x_batch))
310
  features_umap = reducer.fit_transform(x_batch[:n_samples])
311
- x = y_batch.values[:n_samples]
 
312
  index_0 = [index for index in range(len(x)) if x[index] == 0]
313
  index_1 = [index for index in range(len(x)) if x[index] == 1]
314
 
@@ -340,7 +341,8 @@ def single_modal(model,dataset, downstream_model,params):
340
  reducer = umap.UMAP(metric='euclidean', n_neighbors= 10, n_components=2, low_memory=True, min_dist=0.1, verbose=False)
341
  n_samples = np.minimum(1000,len(x_batch))
342
  features_umap = reducer.fit_transform(x_batch[:n_samples])
343
- x = y_batch.values[:n_samples]
 
344
  index_0 = [index for index in range(len(x)) if x[index] == 0]
345
  index_1 = [index for index in range(len(x)) if x[index] == 1]
346
 
@@ -371,7 +373,8 @@ def single_modal(model,dataset, downstream_model,params):
371
  verbose=False)
372
  n_samples = np.minimum(1000, len(x_batch))
373
  features_umap = reducer.fit_transform(x_batch[:n_samples])
374
- x = y_batch.values[:n_samples]
 
375
  #index_0 = [index for index in range(len(x)) if x[index] == 0]
376
  #index_1 = [index for index in range(len(x)) if x[index] == 1]
377
 
@@ -398,7 +401,8 @@ def single_modal(model,dataset, downstream_model,params):
398
  verbose=False)
399
  n_samples = np.minimum(1000, len(x_batch))
400
  features_umap = reducer.fit_transform(x_batch[:n_samples])
401
- x = y_batch.values[:n_samples]
 
402
  # index_0 = [index for index in range(len(x)) if x[index] == 0]
403
  # index_1 = [index for index in range(len(x)) if x[index] == 1]
404
 
@@ -426,7 +430,8 @@ def single_modal(model,dataset, downstream_model,params):
426
  verbose=False)
427
  n_samples = np.minimum(1000, len(x_batch))
428
  features_umap = reducer.fit_transform(x_batch[:n_samples])
429
- x = y_batch.values[:n_samples]
 
430
  # index_0 = [index for index in range(len(x)) if x[index] == 0]
431
  # index_1 = [index for index in range(len(x)) if x[index] == 1]
432
 
@@ -454,7 +459,8 @@ def single_modal(model,dataset, downstream_model,params):
454
  verbose=False)
455
  n_samples = np.minimum(1000, len(x_batch))
456
  features_umap = reducer.fit_transform(x_batch[:n_samples])
457
- x = y_batch.values[:n_samples]
 
458
  # index_0 = [index for index in range(len(x)) if x[index] == 0]
459
  # index_1 = [index for index in range(len(x)) if x[index] == 1]
460
 
@@ -546,7 +552,8 @@ def multi_modal(model_list,dataset, downstream_model,params):
546
  features_umap = reducer.fit_transform(x_batch[:n_samples])
547
 
548
  if "Classifier" in downstream_model:
549
- x = y_batch.values[:n_samples]
 
550
  index_0 = [index for index in range(len(x)) if x[index] == 0]
551
  index_1 = [index for index in range(len(x)) if x[index] == 1]
552
 
 
308
  verbose=False)
309
  n_samples = np.minimum(1000, len(x_batch))
310
  features_umap = reducer.fit_transform(x_batch[:n_samples])
311
+ try:x = y_batch.values[:n_samples]
312
+ except: x = y_batch[:n_samples]
313
  index_0 = [index for index in range(len(x)) if x[index] == 0]
314
  index_1 = [index for index in range(len(x)) if x[index] == 1]
315
 
 
341
  reducer = umap.UMAP(metric='euclidean', n_neighbors= 10, n_components=2, low_memory=True, min_dist=0.1, verbose=False)
342
  n_samples = np.minimum(1000,len(x_batch))
343
  features_umap = reducer.fit_transform(x_batch[:n_samples])
344
+ try:x = y_batch.values[:n_samples]
345
+ except:x = y_batch[:n_samples]
346
  index_0 = [index for index in range(len(x)) if x[index] == 0]
347
  index_1 = [index for index in range(len(x)) if x[index] == 1]
348
 
 
373
  verbose=False)
374
  n_samples = np.minimum(1000, len(x_batch))
375
  features_umap = reducer.fit_transform(x_batch[:n_samples])
376
+ try:x = y_batch.values[:n_samples]
377
+ except:x = y_batch[:n_samples]
378
  #index_0 = [index for index in range(len(x)) if x[index] == 0]
379
  #index_1 = [index for index in range(len(x)) if x[index] == 1]
380
 
 
401
  verbose=False)
402
  n_samples = np.minimum(1000, len(x_batch))
403
  features_umap = reducer.fit_transform(x_batch[:n_samples])
404
+ try:x = y_batch.values[:n_samples]
405
+ except:x = y_batch[:n_samples]
406
  # index_0 = [index for index in range(len(x)) if x[index] == 0]
407
  # index_1 = [index for index in range(len(x)) if x[index] == 1]
408
 
 
430
  verbose=False)
431
  n_samples = np.minimum(1000, len(x_batch))
432
  features_umap = reducer.fit_transform(x_batch[:n_samples])
433
+ try:x = y_batch.values[:n_samples]
434
+ except:x = y_batch[:n_samples]
435
  # index_0 = [index for index in range(len(x)) if x[index] == 0]
436
  # index_1 = [index for index in range(len(x)) if x[index] == 1]
437
 
 
459
  verbose=False)
460
  n_samples = np.minimum(1000, len(x_batch))
461
  features_umap = reducer.fit_transform(x_batch[:n_samples])
462
+ try:x = y_batch.values[:n_samples]
463
+ except:x = y_batch[:n_samples]
464
  # index_0 = [index for index in range(len(x)) if x[index] == 0]
465
  # index_1 = [index for index in range(len(x)) if x[index] == 1]
466
 
 
552
  features_umap = reducer.fit_transform(x_batch[:n_samples])
553
 
554
  if "Classifier" in downstream_model:
555
+ try:x = y_batch.values[:n_samples]
556
+ except:x = y_batch[:n_samples]
557
  index_0 = [index for index in range(len(x)) if x[index] == 0]
558
  index_1 = [index for index in range(len(x)) if x[index] == 1]
559