{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "829ddc03", "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append('..')" ] }, { "cell_type": "code", "execution_count": null, "id": "ea820e23", "metadata": {}, "outputs": [], "source": [ "import torch\n", "import load" ] }, { "cell_type": "markdown", "id": "b9a51fa8", "metadata": {}, "source": [ "# Load MHG-GNN" ] }, { "cell_type": "code", "execution_count": null, "id": "c6ea1fc8", "metadata": {}, "outputs": [], "source": [ "model_ckp = \"models/model_checkpoints/mhg_model/pickles/mhggnn_pretrained_model_radius7_1116_2023.pickle\"\n", "\n", "model = load.load(model_name = model_ckp)\n", "if model is None:\n", " print(\"Model not loaded, please check you have MHG pickle file\")\n", "else:\n", " print(\"MHG model loaded\")" ] }, { "cell_type": "markdown", "id": "b4a0b557", "metadata": {}, "source": [ "# Embeddings\n", "\n", "※ replace the smiles exaple list with your dataset" ] }, { "cell_type": "code", "execution_count": null, "id": "c63a6be6", "metadata": {}, "outputs": [], "source": [ "with torch.no_grad():\n", " repr = model.encode([\"CCO\", \"O=C=O\", \"OC(=O)c1ccccc1C(=O)O\"])\n", " \n", "# Print the latent vectors\n", "print(repr)" ] }, { "cell_type": "markdown", "id": "a59f9442", "metadata": {}, "source": [ "# Decoding" ] }, { "cell_type": "code", "execution_count": null, "id": "6a0d8a41", "metadata": {}, "outputs": [], "source": [ "orig = model.decode(repr)\n", "print(orig)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" } }, "nbformat": 4, "nbformat_minor": 5 }